【題目】若函數(shù)同時(shí)滿足:(1)對(duì)于定義域內(nèi)的任意,有;(2)對(duì)于定義域內(nèi)的任意,當(dāng)時(shí),有,則稱函數(shù)理想函數(shù).給出下列四個(gè)函數(shù):①;②;③;④.

其中是理想函數(shù)的序號(hào)是( )

A.①②B.②③C.②④D.③④

【答案】C

【解析】

由已知得“理想函數(shù)”既是奇函數(shù),又是減函數(shù),由此判斷所給四個(gè)函數(shù)的奇偶性和單調(diào)性,能求出結(jié)果.

解:函數(shù)同時(shí)滿足①對(duì)于定義域上的任意,恒有;

②對(duì)于定義域上的任意,,當(dāng)時(shí),恒有,則稱函數(shù)為“理想函數(shù)”,

“理想函數(shù)”既是奇函數(shù),又是減函數(shù),

是偶函數(shù),且不是單調(diào)函數(shù),故①不是“理想函數(shù)”;

是奇函數(shù),且是減函數(shù),故②是“理想函數(shù)”;

是奇函數(shù),但在定義域上不是單調(diào)函數(shù),故③不是“理想函數(shù)”.

是奇函數(shù),且是減函數(shù),故④是“理想函數(shù)”.

故選:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)古代數(shù)學(xué)名著《孫子算經(jīng)》中有如下問題:今有三女,長(zhǎng)女五日一歸,中女四日一歸,少女三日一歸.問:三女何日相會(huì)?意思是:一家出嫁的三個(gè)女兒中,大女兒每五天回一次娘家,二女兒每四天回一次娘家,小女兒每三天回一次娘家.三個(gè)女兒從娘家同一天走后,至少再隔多少天三人再次相會(huì)?假如回娘家當(dāng)天均回夫家,若當(dāng)?shù)仫L(fēng)俗正月初二都要回娘家,則從正月初三算起的一百天內(nèi),有女兒回娘家的天數(shù)有

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點(diǎn)M(﹣2,﹣1),離心率為.過點(diǎn)M作傾斜角互補(bǔ)的兩條直線分別與橢圓C交于異于M的另外兩點(diǎn)P、Q.

(Ⅰ)求橢圓C的方程;

(Ⅱ)試判斷直線PQ的斜率是否為定值,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC-A1B1C1中,AB=AC=1,BAC=90°,異面直線A1B與B1C1所成的角為60°.

(1)求該三棱柱的體積;

(2)設(shè)D是BB1的中點(diǎn),求DC1與平面A1BC1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中華人民共和國(guó)道路交通安全法》第47條的相關(guān)規(guī)定:機(jī)動(dòng)車行經(jīng)人行橫道時(shí),應(yīng)當(dāng)減速慢行;遇行人正在通過人行橫道,應(yīng)當(dāng)停車讓行,俗稱“禮讓斑馬線”,《中華人民共和國(guó)道路交通安全法》 第90條規(guī)定:對(duì)不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設(shè)備所抓拍的5個(gè)月內(nèi)駕駛員不“禮讓斑馬線”行為統(tǒng)計(jì)數(shù)據(jù):

月份

1

2

3

4

5

違章駕駛員人數(shù)

120

105

100

90

85

(1)請(qǐng)利用所給數(shù)據(jù)求違章人數(shù)與月份之間的回歸直線方程;

(2)交警從這5個(gè)月內(nèi)通過該路口的駕駛員中隨機(jī)抽查了50人,調(diào)查駕駛員不“禮讓斑馬線”行為與駕齡的關(guān)系,得到如下列聯(lián)表:能否據(jù)此判斷有的把握認(rèn)為“禮讓斑馬線”行為與駕齡有關(guān)?

不禮讓斑馬線

禮讓斑馬線

合計(jì)

駕齡不超過1年

22

8

30

駕齡1年以上

8

12

20

合計(jì)

30

20

50

參考公式及數(shù)據(jù):

.

(其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)。

(1)若曲線在點(diǎn)處的切線與直線垂直,求的單調(diào)遞減區(qū)間和極小值(其中為自然對(duì)數(shù)的底數(shù));

(2)若對(duì)任意恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,直線相切于點(diǎn).

(1)求橢圓的方程;

(2)若直線與橢圓交于不同的兩點(diǎn),,與直線相交于,,均不重合).證明:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市每年春節(jié)前后,由于大量的煙花炮竹的燃放,空氣污染較為嚴(yán)重.該市環(huán)保研究所對(duì)近年春節(jié)前后每天的空氣污染情況調(diào)查研究后發(fā)現(xiàn),每天空氣污染的指數(shù)隨時(shí)刻(時(shí))變化的規(guī)律滿足表達(dá)式,,其中為空氣治理調(diào)節(jié)參數(shù),且

1)令,求的取值范圍;

2)若規(guī)定每天中的最大值作為當(dāng)天的空氣污染指數(shù),要使該市每天的空氣污染指數(shù)不超過5,試求調(diào)節(jié)參數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,,分別是棱的中點(diǎn),點(diǎn)棱上,且,,.

(1)求證:平面;

(2)當(dāng)時(shí),求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案