設(shè)z=2x+y,式中變量滿足下列條件:求z的最大值和最小值.
12 3
【解析】變量x、y所滿足的每個(gè)不等式都表示一個(gè)平面區(qū)域,不等式組則表示這些平面區(qū)域的公共區(qū)域.(如圖)
作一組與l0:2x+y=0平行的直線l:2x+y=t.t∈R可知:當(dāng)l在l0的右上方時(shí),直線l上的點(diǎn)(x,y)滿足2x+y>0,即t>0,而且直線l往右平移時(shí),t隨之增大,在經(jīng)過(guò)不等式組所表示的公共區(qū)域內(nèi)的點(diǎn)且平行于l的直線中,以經(jīng)過(guò)點(diǎn)A(5,2)的直線l2所對(duì)應(yīng)的t最大,以經(jīng)過(guò)點(diǎn)B(1,1)的直線l1所對(duì)應(yīng)的t最。zmax=2×5+2=12,zmin=2×1+1=3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第四章第2課時(shí)練習(xí)卷(解析版) 題型:填空題
在平行四邊形ABCD中,AC為一條對(duì)角線,若=(2,4),=(1,3),則=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第六章第4課時(shí)練習(xí)卷(解析版) 題型:填空題
函數(shù)y=x+(x≠0)的值域是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第六章第2課時(shí)練習(xí)卷(解析版) 題型:解答題
某營(yíng)養(yǎng)師要為某個(gè)兒童預(yù)訂午餐和晚餐.已知一個(gè)單位的午餐含12個(gè)單位的碳水化合物、6個(gè)單位的蛋白質(zhì)和6個(gè)單位的維生素C;一個(gè)單位的晚餐含8個(gè)單位的碳水化合物、6個(gè)單位的蛋白質(zhì)和10個(gè)單位的維生素C.另外,該兒童這兩餐需要的營(yíng)養(yǎng)中至少含64個(gè)單位的碳水化合物、42個(gè)單位的蛋白質(zhì)和54個(gè)單位的維生素C.
如果一個(gè)單位的午餐、晚餐的費(fèi)用分別是2.5元和4元,那么要滿足上述的營(yíng)養(yǎng)要求,并且花費(fèi)最少,應(yīng)當(dāng)為該兒童分別預(yù)訂多少個(gè)單位的午餐和晚餐?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第六章第2課時(shí)練習(xí)卷(解析版) 題型:填空題
若直線y=2x上存在點(diǎn)(x,y)滿足約束條件則實(shí)數(shù)m的最大值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第六章第2課時(shí)練習(xí)卷(解析版) 題型:填空題
已知實(shí)數(shù)x、y滿足則z=2x+y的最小值是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第六章第1課時(shí)練習(xí)卷(解析版) 題型:解答題
甲廠以x千克/小時(shí)的速度運(yùn)輸生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求1≤x≤10),每小時(shí)可獲得利潤(rùn)是100(5x+1-)元.
(1)要使生產(chǎn)該產(chǎn)品2小時(shí)獲得的利潤(rùn)不低于3000元,求x的取值范圍;
(2)要使生產(chǎn)900千克該產(chǎn)品獲得的利潤(rùn)最大,問(wèn):甲廠應(yīng)該選取何種生產(chǎn)速度?并求最大利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第6課時(shí)練習(xí)卷(解析版) 題型:解答題
如圖,在三棱柱ABCA1B1C1中,A1B⊥平面ABC,AB⊥AC,且AB=AC=A1B=2.
(1)求棱AA1與BC所成的角的大;
(2)在棱B1C1上確定一點(diǎn)P,使二面角P-AB-A1的平面角的余弦值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第4課時(shí)練習(xí)卷(解析版) 題型:解答題
如圖,在正三棱柱ABCDEF中,AB=2,AD=1.P是CF的延長(zhǎng)線上一點(diǎn),FP=t.過(guò)A、B、P三點(diǎn)的平面交FD于M,交FE于N.
(1)求證:MN∥平面CDE;
(2)當(dāng)平面PAB⊥平面CDE時(shí),求t的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com