設(shè)函數(shù),已知關(guān)于的方程的兩個(gè)根為,

(1)判斷上的單調(diào)性;

(2)若,證明.

(1)上是增函數(shù)    (2) 見解析


解析:

(1)                   (3分)

    由于當(dāng)時(shí),

    所以,故上是增函數(shù)                       (4分)

(2)當(dāng)時(shí),并由①得

                              (6分)

                                               

.

同理.                                                   (10分)

于是

從而有.                                 (12分)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)某物體一天中的溫度T是時(shí)間t的函數(shù),已知,其中溫度的單位是℃,時(shí)間的單位是小時(shí).中午12:00相應(yīng)的t=0,中午12:00以后相應(yīng)的t取正數(shù),中午12:00以前相應(yīng)的t取負(fù)數(shù)(如早上8:00相應(yīng)的t=-4,下午16:00相應(yīng)的t=4).若測(cè)得該物體在早上8:00的溫度為8℃,中午12:00的溫度為60℃,下午13:00的溫度為58℃,且已知該物體的溫度早上8:00與下午16:00有相同的變化率.

(1)求該物體的溫度T關(guān)于時(shí)間t的函數(shù)關(guān)系式;

(2)該物體在上午10:00到下午14:00這段時(shí)間中(包括端點(diǎn))何時(shí)溫度最高?最高溫度是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年浙江省杭州市嚴(yán)州中學(xué)高考數(shù)學(xué)模擬試卷(理科)(解析版) 題型:解答題

設(shè)函數(shù),已知時(shí)f(x)取到最大值2.
(Ⅰ)求a的值;
(Ⅱ)設(shè)y=g(x)與y=f(x)的圖象關(guān)于直線對(duì)稱,求滿足x∈(0,π)且f(x)-2g(x)=3的所有x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山東省高三第一次質(zhì)量檢測(cè)理科數(shù)學(xué)卷 題型:解答題

(滿分12分)

設(shè)某物體一天中的溫度是時(shí)間的函數(shù),已知,其中溫度的單位是℃,時(shí)間的單位是小時(shí).中午12:00相應(yīng)的,中午12:00以后相應(yīng)的取正數(shù),中午12:00以前相應(yīng)的取負(fù)數(shù)(如早上8:00相應(yīng)的t=-4,下午16:00相應(yīng)的t=4).若測(cè)得該物體在早上8:00的溫度為8℃,中午12:00的溫度為60℃,下午13:00的溫度為58℃,且已知該物體的溫度早上8:00與下午16:00有相同的變化率.

(I)求該物體的溫度關(guān)于時(shí)間的函數(shù)關(guān)系式;

(II)該物體在上午10:00到下午14:00這段時(shí)間中(包括端點(diǎn))何時(shí)溫度最高?最高溫度是多少?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山東省高三第一次質(zhì)量檢測(cè)理科數(shù)學(xué)卷 題型:解答題

(滿分12分)

設(shè)某物體一天中的溫度是時(shí)間的函數(shù),已知,其中溫度的單位是℃,時(shí)間的單位是小時(shí).中午12:00相應(yīng)的,中午12:00以后相應(yīng)的取正數(shù),中午12:00以前相應(yīng)的取負(fù)數(shù)(如早上8:00相應(yīng)的t=-4,下午16:00相應(yīng)的t=4).若測(cè)得該物體在早上8:00的溫度為8℃,中午12:00的溫度為60℃,下午13:00的溫度為58℃,且已知該物體的溫度早上8:00與下午16:00有相同的變化率.

(I)求該物體的溫度關(guān)于時(shí)間的函數(shù)關(guān)系式;

(II)該物體在上午10:00到下午14:00這段時(shí)間中(包括端點(diǎn))何時(shí)溫度最高?最高溫度是多少?

 

查看答案和解析>>

同步練習(xí)冊(cè)答案