【題目】解答題。
(1)已知集合A={x|ax2﹣3x+1=0,a∈R},若A中只有一個元素,求a的取值范圍.
(2)集合A={x|x2﹣6x+5<0},C={x|3a﹣2<x<4a﹣3},若CA,求a的取值范圍.
【答案】
(1)解:若A中只有一個元素,則方程ax2﹣3x+1=0有且只有一個實根
當a=0時方程為一元一次方程,滿足條件
當a≠0,此時△=9﹣4a=0,解得:a=
∴a=0或a=
(2)解:∵A={x|x2﹣6x+5<0}={x|1<x<5},
∵CA,
當C=時,3a﹣2>4a﹣3,解得a<1;
當C≠時∴
解得:a≤2
【解析】(1)若A中只有一個元素,表示方程ax2﹣3x+1=0為一次方程,或有兩個等根的二次方程,分別構造關于a的方程,即可求出滿足條件的a值.(2)先解A,由于CA,所以 ,解得即可.
【考點精析】掌握集合的表示方法-特定字母法是解答本題的根本,需要知道①自然語言法:用文字敘述的形式來描述集合.②列舉法:把集合中的元素一一列舉出來,寫在大括號內表示集合.③描述法:{|具有的性質},其中為集合的代表元素.④圖示法:用數(shù)軸或韋恩圖來表示集合.
科目:高中數(shù)學 來源: 題型:
【題目】學校將高二年級某班級50位同學期中考試數(shù)學成績(均為整數(shù))分為7組進行統(tǒng)計,得到如圖所示的頻率分布直方圖.觀察圖中信息,回答下列問題.
(Ⅰ)試估計該班級同學數(shù)學成績的平均分;
(Ⅱ)先準備從該班級數(shù)學成績不低于130分的同學中隨機選出2人參加某活動,求選出的兩人在同一組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給定兩個命題,命題P:函數(shù)f(x)=(a﹣1)x+3在R上是增函數(shù); 命題q:關于x的方程x2﹣x+a=0有實數(shù)根. 若p∧q為假命題,p∨q為真命題,求實數(shù)a的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設關于x的不等式|x﹣2|<a(a∈R)的解集為A,且 ∈A,﹣ A.
(1)對任意的x∈R,|x﹣1|+|x﹣3|≥a2+a恒成立,且a∈N,求a的值.
(2)若a+b=1,a,b∈R+ , 求 + 的最小值,并指出取得最小值時a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,已知cosC+(cosA﹣ sinA)cosB=0.
(1)求角B的大小;
(2)若a=2,b= ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市司法部門為了宣傳《憲法》舉辦法律知識問答活動,隨機對該市18~68歲的人群抽取一個容量為n的樣本,并將樣本數(shù)據(jù)分成五組:[18,28),[28,38),[38,48),[48,58),[58,68),再將其按從左到右的順序分別編號為第1組,第2組,…,第5組,繪制了樣本的頻率分布直方圖;并對回答問題情況進行統(tǒng)計后,結果如下表所示.
組號 | 分組 | 回答正確的人數(shù) | 回答正確的人數(shù)占本組的比例 |
第1組 | [18,28) | 5 | 0.5 |
第2組 | [28,38) | 18 | a |
第3組 | [38,48) | 27 | 0.9 |
第4組 | [48,58) | x | 0.36 |
第5組 | [58,68) | 3 | 0.2 |
(1)分別求出a,x的值;
(2)從第2,3,4組回答正確的人中用分層抽樣方法抽取6人,則第2,3,4組每組應各抽取多少人?
(3)在(2)的前提下,決定在所抽取的6人中隨機抽取2人頒發(fā)幸運獎,求:所抽取的人中第2組至少有1人獲得幸運獎的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在[﹣1,1]的函數(shù)滿足f(﹣x)=﹣f(x),當a,b∈[﹣1,0)時,總有 >0(a≠b),若f(m+1)>f(2m),則實數(shù)m的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com