【題目】已知函數(shù)f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…為自然對(duì)數(shù)的底數(shù).
(1)設(shè)g(x)是函數(shù)f(x)的導(dǎo)函數(shù),求函數(shù)g(x)在區(qū)間[0,1]上的最小值;
(2)若f(1)=0,函數(shù)f(x)在區(qū)間(0,1)內(nèi)有零點(diǎn),求a的取值范圍.

【答案】
(1)解:∵f(x)=ex﹣ax2﹣bx﹣1,∴g(x)=f′(x)=ex﹣2ax﹣b,

又g′(x)=ex﹣2a,x∈[0,1],∴1≤ex≤e,

∴①當(dāng) 時(shí),則2a≤1,g′(x)=ex﹣2a≥0,

∴函數(shù)g(x)在區(qū)間[0,1]上單調(diào)遞增,g(x)min=g(0)=1﹣b;

②當(dāng) ,則1<2a<e,

∴當(dāng)0<x<ln(2a)時(shí),g′(x)=ex﹣2a<0,當(dāng)ln(2a)<x<1時(shí),g′(x)=ex﹣2a>0,

∴函數(shù)g(x)在區(qū)間[0,ln(2a)]上單調(diào)遞減,在區(qū)間[ln(2a),1]上單調(diào)遞增,

g(x)min=g[ln(2a)]=2a﹣2aln(2a)﹣b;

③當(dāng) 時(shí),則2a≥e,g′(x)=ex﹣2a≤0,

∴函數(shù)g(x)在區(qū)間[0,1]上單調(diào)遞減,g(x)min=g(1)=e﹣2a﹣b,

綜上:函數(shù)g(x)在區(qū)間[0,1]上的最小值為


(2)解:由f(1)=0,e﹣a﹣b﹣1=0b=e﹣a﹣1,又f(0)=0,

若函數(shù)f(x)在區(qū)間(0,1)內(nèi)有零點(diǎn),則函數(shù)f(x)在區(qū)間(0,1)內(nèi)至少有三個(gè)單調(diào)區(qū)間,

由(1)知當(dāng)a≤ 或a≥ 時(shí),函數(shù)g(x)在區(qū)間[0,1]上單調(diào),不可能滿足“函數(shù)f(x)在區(qū)間(0,1)內(nèi)至少有三個(gè)單調(diào)區(qū)間”這一要求.

,則gmin(x)=2a﹣2aln(2a)﹣b=3a﹣2aln(2a)﹣e+1

令h(x)= (1<x<e)

= ,∴ .由 >0x<

∴h(x)在區(qū)間(1, )上單調(diào)遞增,在區(qū)間( ,e)上單調(diào)遞減,

= = <0,即gmin(x)<0 恒成立,

∴函數(shù)f(x)在區(qū)間(0,1)內(nèi)至少有三個(gè)單調(diào)區(qū)間 ,

,所以e﹣2<a<1,

綜上得:e﹣2<a<1.


【解析】(1)求出f(x)的導(dǎo)數(shù)得g(x),再求出g(x)的導(dǎo)數(shù),對(duì)它進(jìn)行討論,從而判斷g(x)的單調(diào)性,求出g(x)的最小值;(2)利用等價(jià)轉(zhuǎn)換,若函數(shù)f(x)在區(qū)間(0,1)內(nèi)有零點(diǎn),則函數(shù)f(x)在區(qū)間(0,1)內(nèi)至少有三個(gè)單調(diào)區(qū)間,所以g(x)在(0,1)上應(yīng)有兩個(gè)不同的零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】假設(shè)每一架飛機(jī)的引擎在飛行中出現(xiàn)故障率為,且各引擎是否有故障是獨(dú)立的,已知4引擎飛機(jī)中至少有3個(gè)引擎正常運(yùn)行,飛機(jī)就可成功飛行;2引擎飛機(jī)要2個(gè)引擎全部正常運(yùn)行,飛機(jī)也可成功飛行,要使4引擎飛機(jī)比2引擎飛機(jī)更安全,則的取值范圍是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在上的函數(shù),如果滿足:對(duì)任意,存在常數(shù),都有成立,則稱上的有界函數(shù),其中稱為函數(shù)的一個(gè)上界.已知函數(shù), .

(1)若函數(shù)為奇函數(shù),求實(shí)數(shù)的值;

(2)在(1)的條件下,求函數(shù)在區(qū)間上的所有上界構(gòu)成的集合;

(3)若函數(shù)上是以3為上界的有界函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校高一年級(jí)共有20個(gè)班,為參加全市的鋼琴比賽,調(diào)查了各班中會(huì)彈鋼琴的人數(shù),并以組距為5將數(shù)據(jù)分組成時(shí),作出如下頻率分布直方圖.

(Ⅰ)由頻率分布直方圖估計(jì)各班中會(huì)彈鋼琴的人數(shù)的平均值;

(Ⅱ)若會(huì)彈鋼琴的人數(shù)為的班級(jí)作為第一備選班級(jí),會(huì)彈鋼琴的人數(shù)為的班級(jí)作為第二備選班級(jí),現(xiàn)要從這兩類備選班級(jí)中選出兩個(gè)班參加市里的鋼琴比賽,求這兩類備選班級(jí)中均有班級(jí)被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,函數(shù)

的最大值為0,記,求的值;

當(dāng)時(shí),記不等式的解集為M,求函數(shù)的值域是自然對(duì)數(shù)的底數(shù);

當(dāng)時(shí),討論函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,對(duì)于直線l:ax+by+c=0和點(diǎn)P1(x1 , y1),P2(x2 , y2),記η=(ax1+by1+c)(ax2+by2+c),若η<0,則稱點(diǎn)P1 , P2被直線l分隔,若曲線C與直線l沒(méi)有公共點(diǎn),且曲線C上存在點(diǎn)P1、P2被直線l分隔,則稱直線l為曲線C的一條分隔線.
(1)求證:點(diǎn)A(1,2),B(﹣1,0)被直線x+y﹣1=0分隔;
(2)若直線y=kx是曲線x2﹣4y2=1的分隔線,求實(shí)數(shù)k的取值范圍;
(3)動(dòng)點(diǎn)M到點(diǎn)Q(0,2)的距離與到y(tǒng)軸的距離之積為1,設(shè)點(diǎn)M的軌跡為曲線E,求證:通過(guò)原點(diǎn)的直線中,有且僅有一條直線是E的分隔線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿足 an≤an+1≤3an , n∈N* , a1=1.
(1)若a2=2,a3=x,a4=9,求x的取值范圍;
(2)設(shè){an}是公比為q的等比數(shù)列,Sn=a1+a2+…an , 若 Sn≤Sn+1≤3Sn , n∈N* , 求q的取值范圍.
(3)若a1 , a2 , …ak成等差數(shù)列,且a1+a2+…ak=1000,求正整數(shù)k的最大值,以及k取最大值時(shí)相應(yīng)數(shù)列a1 , a2 , …ak的公差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)年至年農(nóng)村居民家庭純收入(單位:千元)的數(shù)據(jù)如下表:

年份

2011

2012

2013

2014

2015

2016

2017

年份代號(hào)

1

2

3

4

5

6

7

人均純收入

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(Ⅰ)求關(guān)于的線性回歸方程;

(Ⅱ)利用(Ⅰ)中的回歸方程,分析年至年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測(cè)該地區(qū)年農(nóng)村居民家庭人均純收入.

注:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種設(shè)備隨著使用年限的增加,每年的維護(hù)費(fèi)相應(yīng)增加現(xiàn)對(duì)一批該設(shè)備進(jìn)行調(diào)查,得到這批設(shè)備自購(gòu)入使用之日起,前五年平均每臺(tái)設(shè)備每年的維護(hù)費(fèi)用大致如表:

年份

1

2

3

4

5

維護(hù)費(fèi)萬(wàn)元

y關(guān)于t的線性回歸方程;

若該設(shè)備的價(jià)格是每臺(tái)5萬(wàn)元,甲認(rèn)為應(yīng)該使用滿五年換一次設(shè)備,而乙則認(rèn)為應(yīng)該使用滿十年換一次設(shè)備,你認(rèn)為甲和乙誰(shuí)更有道理?并說(shuō)明理由.

參考公式:

查看答案和解析>>

同步練習(xí)冊(cè)答案