已知動圓過定點P(1,0),且與定直線l:x=-1相切,點C在l上.
(1)求動圓圓心的軌跡M的方程;
(2)設過點P,且斜率為-的直線與曲線M相交于A、B兩點. 問:△ABC能否為正三角形?若能,求點C的坐標;若不能,說明理由.
(1) (2)不能
解析試題分析:(1)由拋物線的定義可得知,軌跡為拋物線, P(1,0)看作焦點,直線l:x=-1看作準線.從而得出軌跡方程.
(2) 先得出直線的方程,代入圓的方程中可求出直線與圓的交點,再利用兩點間距離公式列出方程組,最后驗證.
試題解析:(1)依題意,曲線M是以點P為焦點,直線l為準線的拋物線, (2分)
所以曲線M的方程為,如上圖. (4分)
(2)由題意得,直線的方程為
(6分)
由 消去,得
解得 (10分)
存在這樣的C點,使得為以為兩腰的等腰三角形,
設則
解得 (13分)
但是不符合(1),所以上面方程組無解,因此直線l上不存在點C使得是正三角形 (14分)
考點:拋物線的有關(guān)知識,兩點間的距離公式.
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓:()過點,且橢圓的離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若動點在直線上,過作直線交橢圓于兩點,且為線段中點,再過作直線.證明:直線恒過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的一個焦點為,過點且垂直于長軸的直線被橢圓截得的弦長為;為橢圓上的四個點。
(Ⅰ)求橢圓的方程;
(Ⅱ)若,且,求四邊形的面積的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的兩個焦點為F1,F(xiàn)2,橢圓上一點M
滿足.
(1)求橢圓的方程;
(2)若直線L:y=與橢圓恒有不同交點A,B,且(O為坐標原點),求實數(shù)k的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的中心在原點,焦點在軸上,長軸長為,且點在橢圓上.
(1)求橢圓的方程;
(2)設是橢圓長軸上的一個動點,過作方向向量的直線交橢圓于、兩點,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設橢圓的左、右頂點分別為、,離心率.過該橢圓上任一點P作PQ⊥x軸,垂足為Q,點C在QP的延長線上,且.
(1)求橢圓的方程;
(2)求動點C的軌跡E的方程;
(3)設直線MN過橢圓的右焦點與橢圓相交于M、N兩點,且,求直線MN的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的方程為,雙曲線的左、右焦點分別為的左、右頂點,而的左、右頂點分別是的左、右焦點,
(1)求雙曲線的方程;
(2)若直線與橢圓及雙曲線都恒有兩個不同的交點,且與的兩個交點A和B滿足(其中0為原點),求k的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,F(xiàn)1,F(xiàn)2是離心率為的橢圓C:(a>b>0)的左、右焦點,直線:x=-將線段F1F2分成兩段,其長度之比為1:3.設A,B是C上的兩個動點,線段AB的中垂線與C交于P,Q兩點,線段AB的中點M在直線l上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知雙曲線的離心率為,右準線方程為,
(1)求雙曲線C的方程;
(2)已知直線與雙曲線C交于不同的兩點A,B,且線段AB的中點在以雙曲線C的實軸長為直徑的圓上,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com