求以橢圓短軸的兩個頂點為焦點,且過點的雙曲線的標準方程。
解:橢圓中,
所以短軸的兩個頂點坐標為
又雙曲線過點
根據雙曲線的定義,
所以  因為C=3    所以
又因為雙曲線焦點在y軸上,所以雙曲線的方程為
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

已知是橢圓的兩個焦點,過且與橢圓長軸垂直的直線交橢圓于A、B兩點,若是等腰直角三角形,則這個橢圓的離心率是(    )
A、          B、           C、         D、     

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
已知橢圓過點,且點軸上的射影恰為橢圓的一個焦點
(Ⅰ)求橢圓的方程;
(Ⅱ)過作兩條傾斜角互補的直線與橢圓分別交于兩點.試問:四邊形能否為平行四邊形?若能,求出直線的方程;否則說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓,其長軸長是短軸長的2倍,右準線方程為x =
(1)求該橢圓方程,
(2)如過點(0,m),且傾斜角為的直線L與橢圓交于A、B兩點,當△AOB(O為原點)面積最大時,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)已知橢圓,直線l與橢圓交于A、B兩點,M是線段AB的中點,連接OM并延長交橢圓于點C.直線AB與直線OM的斜率分別為k、m,且

(Ⅰ)求的值;
(Ⅱ)若直線AB經過橢圓的右焦點F,問:對于任意給定的不等于零的實數(shù)k,是否存在a∈,使得四邊形OACB是平行四邊形,請證明你的結論;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分10分)
已知橢圓焦點是  和,離心率
(1)求橢圓的標準方程;
(2)設點在這個橢圓上,且,求  的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分15分)如圖,已知橢圓:+=1(a>b>0)的長軸AB長為4,離心率e=,O為坐標原點,過B的直線l與x軸垂直.P是橢圓上異于A、B的任意一點,PH⊥x軸,H為垂足,延長HP到點Q使得HP=PQ,連結AQ延長交直線于點M,N為的中點.
(1)求橢圓的方程;
(2)證明:Q點在以為直徑的圓上;
(3)試判斷直線QN與圓的位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
橢圓的離心率為,長軸端點與短軸端點間的距離為.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點的直線與橢圓交于兩點,為坐標原點,若,求
直線的斜率

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

以橢圓的中心為頂點,左準線為準線的拋物線方程是              .

查看答案和解析>>

同步練習冊答案