【題目】如圖,小明從街道的E處出發(fā),先到F處與小紅會(huì)合,再一起到位于G處的老年公寓參加志愿者活動(dòng),則小明到老年公寓可以選擇的最短路徑條數(shù)為(  )

A. 9B. 12C. 18D. 24

【答案】C

【解析】

E點(diǎn)到F點(diǎn)最短的走法,無(wú)論怎樣走,一定包括4段,其中2段方向相同,另2段方向相同,每種最短走法,即是從4段中選出2段走東向的,選出2段走北向的,利用組合的知識(shí),即可求解。

EF,每條東西向的街道被分成2段,每條南北向的街道被分稱(chēng)2段,

E點(diǎn)到F點(diǎn)最短的走法,無(wú)論怎樣走,一定包括4段,其中2段方向相同,另2段方向相同,每種最短走法,即是從4段中選出2段走東向的,選出2段走北向的,

故共有種走法,

同理從FG,最短的走法,有種走法,

所以小明到老年公寓可以選擇的最短路徑條數(shù)為種走法,故選C。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中,錯(cuò)誤的是( )

A. 若命題,,則命題,

B. ”是“”的必要不充分條件

C. “若,則、中至少有一個(gè)不小于”的逆否命題是真命題

D. ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率,頂點(diǎn)到直線的距離為,橢圓內(nèi)接四邊形(點(diǎn)在橢圓上)的對(duì)角線相交于點(diǎn),且.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)的內(nèi)角所對(duì)的邊為,則下列命題正確的是_____

①若,則 ②若,

③若,則; ④若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù)fx),若存在x0R,使fx0=x0,則稱(chēng)x0fx)的一個(gè)不動(dòng)點(diǎn),已知fx=x2+ax+4[13]恒有兩個(gè)不同的不動(dòng)點(diǎn),則實(shí)數(shù)a的取值范圍______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)在定義域內(nèi)單調(diào)遞增,求的取值范圍;

(2)若且關(guān)于的方程上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角梯形ABCD中,BCDCAEDC,M,N分別是AD,BE的中點(diǎn),將三角形ADE沿AE折起,則下列說(shuō)法正確的是________(填序號(hào)).

①不論D折至何位置(不在平面ABC內(nèi)),都有MN∥平面DEC;②不論D折至何位置,都有MNAE;③不論D折至何位置(不在平面ABC內(nèi)),都有MNAB;④在折起過(guò)程中,一定存在某個(gè)位置,使ECAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為,(為參數(shù)),直線的參數(shù)方程為為參數(shù),為實(shí)數(shù)),直線與曲線交于 兩點(diǎn).

(1)若,求的長(zhǎng)度;

(2)當(dāng)面積取得最大值時(shí)(為原點(diǎn)),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】展開(kāi)式中前三項(xiàng)系數(shù)成等差數(shù)列,求:

(1)展開(kāi)式中含x的一次冪的項(xiàng);

(2)展開(kāi)式中所有x 的有理項(xiàng);

(3)展開(kāi)式中系數(shù)最大的項(xiàng)。

查看答案和解析>>

同步練習(xí)冊(cè)答案