設(shè)橢圓的一個(gè)頂點(diǎn)與拋物線的焦點(diǎn)重合,分別是橢圓的左、右焦點(diǎn),且離心率且過(guò)橢圓右焦點(diǎn)的直線與橢圓C交于兩點(diǎn).
(1)求橢圓C的方程;
(2)是否存在直線,使得.若存在,求出直線的方程;若不存在,說(shuō)明理由.
(3)若AB是橢圓C經(jīng)過(guò)原點(diǎn)O的弦, MNAB,求證:為定值.
(Ⅰ)(Ⅱ)直線的方程為(III)略
(1) 橢圓的頂點(diǎn)為,即,                 1分
,所以,                              2分
橢圓的標(biāo)準(zhǔn)方程為                                3分  
(2)由題可知,直線與橢圓必相交.
設(shè)存在直線,且,.
,                     
,,                  5分

=    7分  
所以,故直線的方程為           9分
(3)設(shè),
由(2)可得:  |MN|=
=               11分
消去y,并整理得: ,
|AB|=,                         13分
 為定值                           14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(2001高考江西、山西、天津)設(shè)坐標(biāo)原點(diǎn)為O,拋物線y2=2x與過(guò)焦點(diǎn)的直線交于A、B兩點(diǎn),則等于(   )
A.B.-C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知H(-3,0),點(diǎn)Py軸上,點(diǎn)Qx軸的正半軸上,點(diǎn)M在直線PQ上,且滿足
⑴當(dāng)點(diǎn)Py軸上移動(dòng)時(shí),求點(diǎn)M的軌跡C
⑵過(guò)點(diǎn)T(-1,0)作直線l與軌跡C交于AB兩點(diǎn),若在x軸上存在一點(diǎn)E(x0,0),使得ABE是等邊三角形,求x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知拋物線和雙曲線都經(jīng)過(guò)點(diǎn),它們?cè)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823120307880187.gif" style="vertical-align:middle;" />軸上有共同焦點(diǎn),拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn),則雙曲線的標(biāo)準(zhǔn)方程是                .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知直線l的方程為,且直線lx軸交于點(diǎn)M,圓x軸交于兩點(diǎn)(如圖).
(I)過(guò)M點(diǎn)的直線交圓于兩點(diǎn),且圓孤恰為圓周的,求直線的方程;
(II)求以l為準(zhǔn)線,中心在原點(diǎn),且與圓O恰有兩個(gè)公共點(diǎn)的橢圓方程;

(III)過(guò)M點(diǎn)的圓的切線交(II)中的一個(gè)橢圓于兩點(diǎn),其中兩點(diǎn)在x軸上方,求線段CD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題12分)已知橢圓C的焦點(diǎn)在x軸上,它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn),離心率。(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過(guò)橢圓C的右焦點(diǎn)作直線交橢圓C于A、B兩點(diǎn),交y軸于M,若為定值嗎?證明你的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
已知直線l與橢圓(ab>0)相交于不同兩點(diǎn)A、B,,且,以M為焦點(diǎn),以橢圓的右準(zhǔn)線為相應(yīng)準(zhǔn)線的雙曲線與直線l相交于N(4,1). (I)求橢圓的離心率; (II)設(shè)雙曲線的離心率為,記,求的解析式,并求其定義域和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)為橢圓左、右焦點(diǎn),過(guò)橢圓中心任作一條直線與橢圓交于兩點(diǎn),當(dāng)四邊形面積最大時(shí),的值等于         .               

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓C:
x2
9
+
y2
4
=1
,斜率為k的直線l與橢圓相交于點(diǎn)M,N,點(diǎn)A是線段MN的中點(diǎn),直線OA(O為坐標(biāo)原點(diǎn))的斜率是k′,那么kk′=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案