【題目】我國(guó)古代數(shù)學(xué)名著《數(shù)書(shū)九章》中有“天池盆測(cè)雨”題,大概意思如下:在下雨時(shí),用一個(gè)圓臺(tái)形的天池盆接雨水,天池盆盆口直徑為2尺8寸,盆底直徑為1尺2寸,盆深1尺8寸.若盆中積水深9寸,則平均降雨量是(注:①平均降雨量等于盆中積水體積除以盆口面積;②1尺等于10寸;③臺(tái)體的體積)( )
A.3寸B.4寸C.5寸D.6寸
【答案】A
【解析】
作出圓臺(tái)的軸截面,根據(jù)已知條件,利用圓臺(tái)體積公式可求得盆中積水體積,再求出盆口面積,根據(jù)平均降水量的定義可求得結(jié)果.
作出圓臺(tái)的軸截面如圖所示:
由題意知,寸,寸,寸,寸,
即是的中點(diǎn),
為梯形的中位線(xiàn),
寸,即積水的上底面半徑為寸,
盆中積水的體積為(立方寸),
又盆口的面積為(平方寸),
平均降雨量是寸,即平均降雨量是3寸,
故選:A
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)結(jié)論,其中正確的是( )
①?gòu)膭蛩賯魉偷纳a(chǎn)流水線(xiàn)上,每30分鐘抽取一件產(chǎn)品進(jìn)行檢測(cè),這樣的抽樣是分層抽樣;②“”成立的必要而不充分條件是“”;③若樣本數(shù)據(jù),,…,的標(biāo)準(zhǔn)差為3,則,,…,的方差為145;④,,是向量,則由“”類(lèi)比得到“”的結(jié)論是正確的.
A.①④B.②③C.①③D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐,底面為菱形,,為上的點(diǎn),過(guò)的平面分別交,于點(diǎn),,且平面.
(1)證明:;
(2)當(dāng)為的中點(diǎn),,與平面所成的角為,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線(xiàn)的兩頂點(diǎn)分別為,為雙曲線(xiàn)的一個(gè)焦點(diǎn),為虛軸的一個(gè)端點(diǎn),若在線(xiàn)段上(不含端點(diǎn))存在兩點(diǎn),使得,則雙曲線(xiàn)的漸近線(xiàn)斜率的平方的取值范圍是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,與軸交于點(diǎn),,過(guò)軸上一點(diǎn)引軸的垂線(xiàn),交橢圓于點(diǎn),,當(dāng)與橢圓右焦點(diǎn)重合時(shí),.
(1)求橢圓的方程;
(2)設(shè)直線(xiàn)與直線(xiàn)交于點(diǎn),是否存在定點(diǎn)和,使為定值.若存在,求、點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是半圓的直徑,是半圓上除點(diǎn)外的一個(gè)動(dòng)點(diǎn),垂直于所在的平面,垂足為,,且,.
(1)證明:平面平面;
(2)當(dāng)為半圓弧的中點(diǎn)時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1)為某省2016年快遞業(yè)務(wù)量統(tǒng)計(jì)表,圖(2)某省2016年快遞業(yè)務(wù)收入統(tǒng)計(jì)表,對(duì)統(tǒng)計(jì)圖下列理解錯(cuò)誤的是()
A.2016年1~4月業(yè)務(wù)量最高3月最低2月,差值接近2000萬(wàn)件
B.2016年1~4月業(yè)務(wù)量同比增長(zhǎng)率均超過(guò)50%,在3月最高,和春節(jié)蟄伏后網(wǎng)購(gòu)迎來(lái)噴漲有關(guān)
C.從兩圖中看,增量與增長(zhǎng)速度并不完全一致,但業(yè)務(wù)量與業(yè)務(wù)的收入變化高度一致
D.從1~4月來(lái)看,業(yè)務(wù)量與業(yè)務(wù)收入量有波動(dòng),但整體保持高速增長(zhǎng)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線(xiàn)C的參數(shù)方程為(為參數(shù)),直線(xiàn)的斜率為1,在軸上的截距為2
(1)在直角坐標(biāo)系中以O為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)M的極坐標(biāo)為,判斷點(diǎn)M與直線(xiàn)的位置關(guān)系;
(2)設(shè)點(diǎn)A是曲線(xiàn)C上的任意點(diǎn),求它到直線(xiàn)的距離的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形ABCD,E,F分別為AB,CD的中點(diǎn),將△ADE沿DE折起,使△ACD為等邊三角形,如圖所示,記二面角A-DE-C的大小為.
(1)證明:點(diǎn)A在平面BCDE內(nèi)的射影G在直線(xiàn)EF上;
(2)求角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com