精英家教網 > 高中數學 > 題目詳情

【題目】下面給出四種說法:

①用相關指數R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好;

②命題P:“x0∈R,x02﹣x0﹣1>0”的否定是¬P:“x∈R,x2﹣x﹣1≤0”;

③設隨機變量X服從正態(tài)分布N(0,1),若P(x>1)=p則P(﹣1<X<0)= ﹣p

④回歸直線一定過樣本點的中心( ).

其中正確的說法有( )

A. ①②③ B. ①②④ C. ②③④ D. ①②③④

【答案】C

【解析】對于①,用相關指數刻畫回歸效果時, 越大,說明模型的擬合效果越好, ①錯誤;對于②,命題 的否定是 ,②正確;對于③,根據正態(tài)分布 的性質可得,若

,正確;對于,回歸直線一定過樣本點的中心 ,④正確;綜上所述②③④正確,故選 .

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x2+1,x∈R.

(1)分別計算f(1)-f(-1),f(2)-f(-2),f(3)-f(-3)的值;

(2)由(1)你發(fā)現了什么結論?并加以證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,對任意實數, .

1上是單調遞減的,求實數的取值范圍;

2)若對任意恒成立,求正數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本小題滿分12分)某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入 萬元廣告費用,并將各地的銷售收益(單位:萬元)繪制成如圖所示的頻率分布直方圖.由于工作人員操作失誤,橫軸的數據丟失,但可以確定橫軸是從開始計數的.

(Ⅰ)根據頻率分布直方圖計算圖中各小長方形的寬度;

(Ⅱ)該公司按照類似的研究方法,測得另外一些數據,并整理得到上表:表中的數據顯示之間存在線性相關關系,求關于的回歸方程;

(Ⅲ)若廣告投入萬元時,實際銷售收益為.萬元,求殘差.

附:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對于定義域為的函數,若滿足①;②當,且時,都有;③當,且時, ,則稱為“偏對函數”.現給出四個函數: ; . 則其中是“偏對稱函數”的函數個數為( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】有甲、乙兩種商品,經營銷售這兩種商品所得的利潤依次為M萬元和N萬元,它們與投入資金萬元的關系可由經驗公式給出:M=,N= (≥1).今有8萬元資金投入經營甲、乙兩種商品,且乙商品至少要求投資1萬元,

設投入乙種商品的資金為萬元,總利潤;

2)為獲得最大利潤,對甲、乙兩種商品的資金投入分別是多少?共能獲得多大利潤?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱錐中,,,都是邊長為2的等邊三角形,設在底面的射影為.

(1)求證:中點;

(2)證明:

(3)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知三棱錐的直觀圖和三視圖如下:

(1)求證: 底面;

(2)求三棱錐的體積;

(3)求三棱錐的側面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本小題滿分13分)

如圖,在正四面體中,分別是棱的中點.

1)求證:四邊形是平行四邊形;

2)求證:平面;

3)求證:平面.

查看答案和解析>>

同步練習冊答案