【題目】下面給出四種說法:
①用相關指數R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好;
②命題P:“x0∈R,x02﹣x0﹣1>0”的否定是¬P:“x∈R,x2﹣x﹣1≤0”;
③設隨機變量X服從正態(tài)分布N(0,1),若P(x>1)=p則P(﹣1<X<0)= ﹣p
④回歸直線一定過樣本點的中心( ).
其中正確的說法有( )
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2+1,x∈R.
(1)分別計算f(1)-f(-1),f(2)-f(-2),f(3)-f(-3)的值;
(2)由(1)你發(fā)現了什么結論?并加以證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入 萬元廣告費用,并將各地的銷售收益(單位:萬元)繪制成如圖所示的頻率分布直方圖.由于工作人員操作失誤,橫軸的數據丟失,但可以確定橫軸是從開始計數的.
(Ⅰ)根據頻率分布直方圖計算圖中各小長方形的寬度;
(Ⅱ)該公司按照類似的研究方法,測得另外一些數據,并整理得到上表:表中的數據顯示與之間存在線性相關關系,求關于的回歸方程;
(Ⅲ)若廣告投入萬元時,實際銷售收益為.萬元,求殘差.
附:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于定義域為的函數,若滿足①;②當,且時,都有;③當,且時, ,則稱為“偏對函數”.現給出四個函數: ; . 則其中是“偏對稱函數”的函數個數為( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有甲、乙兩種商品,經營銷售這兩種商品所得的利潤依次為M萬元和N萬元,它們與投入資金萬元的關系可由經驗公式給出:M=,N= (≥1).今有8萬元資金投入經營甲、乙兩種商品,且乙商品至少要求投資1萬元,
設投入乙種商品的資金為萬元,總利潤;
(2)為獲得最大利潤,對甲、乙兩種商品的資金投入分別是多少?共能獲得多大利潤?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com