【題目】已知函數(shù)f(x)=x2+1,x∈R.
(1)分別計算f(1)-f(-1),f(2)-f(-2),f(3)-f(-3)的值;
(2)由(1)你發(fā)現(xiàn)了什么結(jié)論?并加以證明.
【答案】(1)詳見解析;(2)詳見解析.
【解析】試題分析:(1)將x= 分別代入解析式,求出相應(yīng)的函數(shù)值;(2) 由(1)可發(fā)現(xiàn)結(jié)論:對任意x∈R,有f(x)=f(-x).計算可得結(jié)論成立.
試題解析:
(1)f(1)-f(-1)=(12+1)-[(-1)2+1]=2-2=0;
f(2)-f(-2)=(22+1)-[(-2)2+1]=5-5=0;
f(3)-f(-3)=(32+1)-[(-3)2+1]=10-10=0.
(2)由(1)可發(fā)現(xiàn)結(jié)論:對任意x∈R,有f(x)=f(-x).證明如下:
由題意得f(-x)=(-x)2+1=x2+1=f(x),∴對任意x∈R,總有f(x)=f(-x).
科目:高中數(shù)學 來源: 題型:
【題目】某公司生產(chǎn)一種電子儀器的固定成本為20 000元,每生產(chǎn)一臺儀器需要增加投入100元,已知總收益滿足函數(shù):R(x)=其中x是儀器的月產(chǎn)量.當月產(chǎn)量為何值時,公司所獲得利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,.
(1)如果函數(shù)的單調(diào)遞減區(qū)間為,求函數(shù)的解析式;
(2)在(1)的條件下,求函數(shù)的圖象在點處的切線方程;
(3)已知不等式恒成立,若方程恰有兩個不等實根,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,直線的方程為,曲線的參數(shù)方程為(為參數(shù)).
(1)已知在極坐標系(與直角坐標系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,點的極坐標為,判斷點與曲線的位置關(guān)系;
(2)設(shè)點是曲線上的一個動點,求它到直線的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三棱錐A-BCD中,△ABC是等腰直角三角形,且AC⊥BC,BC=2,AD⊥平面BCD,AD=1.
(1)求證:平面ABC⊥平面ACD;
(2)若E為AB中點,求點A到平面CED的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)滿足(),且.
(1)求的解析式;
(2)若關(guān)于的方程在區(qū)間上有唯一實數(shù)根,求實數(shù)的取值范圍(注:相等的實數(shù)根算一個).
(3)函數(shù),試問是否存在實數(shù),使得對任意, 都有成立,若存在,求出實數(shù)的取值范圍,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某射擊運動員每次擊中目標的概率都是0.8.現(xiàn)采用隨機模擬的方法估計該運動員射擊4次,至多擊中1次的概率:先由計算器產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),指定0,1表示沒有擊中目標,2,3,4,5,6,7,8,9表示擊中目標;因為射擊4次,故以每4個隨機數(shù)為一組,代表射擊4次的結(jié)果.經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù):
5 727 0 293 7 140 9 857 0 347
4 373 8 636 9 647 1 417 4 698
0 371 6 233 2 616 8 045 6 011
3 661 9 597 7 424 6 710 4 281
據(jù)此估計,該射擊運動員射擊4次至多擊中1次的概率為( )
A. 0.95 B. 0.1
C. 0.15 D. 0.05
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下面給出四種說法:
①用相關(guān)指數(shù)R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好;
②命題P:“x0∈R,x02﹣x0﹣1>0”的否定是¬P:“x∈R,x2﹣x﹣1≤0”;
③設(shè)隨機變量X服從正態(tài)分布N(0,1),若P(x>1)=p則P(﹣1<X<0)= ﹣p
④回歸直線一定過樣本點的中心( ).
其中正確的說法有( )
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com