【題目】【2017安徽淮北二!如圖,三棱柱中,四邊形是菱形,,二面角為, .
(Ⅰ)求證:平面平面;
(Ⅱ)求二面角的余弦值.
【答案】(1)見解析(2)
【解析】試題分析:(1)先由三棱柱性質(zhì)將線面垂直轉(zhuǎn)化為,再由得線線垂直,又由是菱形得,最后根據(jù)線面垂直判定定理得線面垂直, 根據(jù)面面垂直判定定理得平面平面.(2)求二面角的大小,一般借助空間向量數(shù)量積求解,先根據(jù)條件建立空間直角坐標(biāo)系,設(shè)立各點坐標(biāo),利用方程組解出各面法向量,利用向量數(shù)量積求兩法向量夾角,最后根據(jù)二面角與法向量夾角關(guān)系求二面角.
試題解析:(1)證明:在三棱柱中,由
得,則,
又是菱形, 得,而,
則,
故平面平面.
(2)
由題意得為正三角形,
取得中點為D,連CD,BD,
則,又
易得,則為二面角的平面角,
因, =,所以,
所以
過交點作,垂足為,連
則為二面角的平面角,
又 得
所以
另:建系用向量法相應(yīng)給分。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題p:直線y=kx+3與圓x2+y2=1相交于A,B兩點;命題q:曲線﹣=1表示焦點在y軸上的雙曲線,若p∧q為真命題,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中華人民共和國道路交通安全法》規(guī)定:車輛駕駛員血液酒精濃度在20~80mg/100mL(不含80)之間,屬于酒后駕車;在80mg/100mL(含80)以上時,屬于醉酒駕車.某市公安局交通管理部門在某路段的一次攔查行動中,依法檢查了300輛機動車,查處酒后駕車和醉酒駕車的駕駛員共20人,檢測結(jié)果如表:
酒精含量(mg/100mL) | [20,30) | [30,40) | [40,50) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) |
人數(shù) | 3 | 4 | 1 | 4 | 2 | 3 | 2 | 1 |
(1)繪制出檢測數(shù)據(jù)的頻率分布直方圖(計算并標(biāo)上選取的y軸單位長度,在圖中用實線畫出矩形框并用陰影表示),估計檢測數(shù)據(jù)中酒精含量的眾數(shù)
(2)求檢測數(shù)據(jù)中醉酒駕駛的頻率,并估計檢測數(shù)據(jù)中酒精含量的中位數(shù)、平均數(shù)(請寫出計算過程).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017四川宜賓二診】如甲圖所示,在矩形中, , , 是的中點,將沿折起到位置,使平面平面,得到乙圖所示的四棱錐.
(Ⅰ)求證: 平面;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 Sn是數(shù)列{an}的前n項和,且Sn=2an+n﹣4.
(1)求a1的值;
(2)若bn=an﹣1,試證明數(shù)列{bn}為等比數(shù)列;
(3)求數(shù)列{an}的通項公式,并證明: + +…+ <1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中國謎語大會》是中央電視臺科教頻道的一檔集文化、益智、娛樂為一體的大型電視競猜節(jié)目,目的是為弘揚中國傳統(tǒng)文化、豐富群眾文化生活.為選拔選手參加“中國謎語大會”,某地區(qū)舉行了一次“謎語大賽”活動.為了了解本次競賽選手的成績情況,從中抽取了部分選手的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)作為樣本進(jìn)行統(tǒng)計.按照[50,60),[60,70),[70,80),[80,90),[90,100)的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出得分在[50,60),[90,100)的數(shù)據(jù)).
(1)求樣本容量n和頻率分布直方圖中的x,y的值;
(2)分?jǐn)?shù)在[80,90)的學(xué)生中,男生有2人,現(xiàn)從該組抽取三人“座談”,求至少有兩名女生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C經(jīng)過點A(1,3)、B(2,2),并且直線m:3x﹣2y=0平分圓C.
(1)求圓C的方程;
(2)若過點D(0,1),且斜率為k的直線l與圓C有兩個不同的交點M、N.
(Ⅰ)求實數(shù)k的取值范圍;
(Ⅱ)若 =12,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A(x1 , y1),B(x2 , y2)是函數(shù)f(x)= 的圖象上的任意兩點(可以重合),點M在直線x= 上,且 = .
(1)求x1+x2的值及y1+y2的值;
(2)已知S1=0,當(dāng)n≥2時,Sn=f( )+f( )+f( )+…+f( ),求Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在四棱錐P﹣ABCD中,底面ABCD是平行四邊形,PA⊥平面ABCD,PA= ,AB=1.AD=2.∠BAD=120°,E,F(xiàn),G,H分別是BC,PB,PC,AD的中點.
(Ⅰ)求證:PH∥平面GED;
(Ⅱ)過點F作平面α,使ED∥平面α,當(dāng)平面α⊥平面EDG時,設(shè)PA與平面α交于點Q,求PQ的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com