在平面直角坐標(biāo)系xOy中,已知A(3,1),C(1,0).

(1)求以點(diǎn)C為圓心,且經(jīng)過點(diǎn)A的圓C的標(biāo)準(zhǔn)方程;

(2)若直線l的方程為x﹣2y+9=0,判斷直線l與(1)中圓C的位置關(guān)系,并說明理由.

考點(diǎn):

直線與圓的位置關(guān)系;圓的標(biāo)準(zhǔn)方程.

專題:

直線與圓.

分析:

(1)因?yàn)閳AC的圓心為C(1,0),可設(shè)圓C的標(biāo)準(zhǔn)方程為(x﹣1)2+y2=r2.把點(diǎn)A(3,1)代入圓C的方程求得r2=5,從而求得圓C的標(biāo)準(zhǔn)方程.

(2)由于圓心C到直線l的距離為,大于半徑,可得直線l與圓C相離.

解答:

解:(1)因?yàn)閳AC的圓心為C(1,0),可設(shè)圓C的標(biāo)準(zhǔn)方程為(x﹣1)2+y2=r2

因?yàn)辄c(diǎn)A(3,1)在圓C上,所以(3﹣1)2+12=r2,即r2=5.

所以圓C的標(biāo)準(zhǔn)方程為(x﹣1)2+y2=5.

(2)由于圓心C到直線l的距離為

因?yàn)?sub>,即d>r,所以直線l與圓C相離.

點(diǎn)評:

本小題主要考查圓的標(biāo)準(zhǔn)方程、直線與圓的位置關(guān)系等基礎(chǔ)知識(shí),點(diǎn)到直線的距離公式的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,已知圓心在直線y=x+4上,半徑為2
2
的圓C經(jīng)過坐標(biāo)原點(diǎn)O,橢圓
x2
a2
+
y2
9
=1(a>0)
與圓C的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為10.
(1)求圓C的方程;
(2)若F為橢圓的右焦點(diǎn),點(diǎn)P在圓C上,且滿足PF=4,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點(diǎn).若點(diǎn)A的橫坐標(biāo)是
3
5
,點(diǎn)B的縱坐標(biāo)是
12
13
,則sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,若焦點(diǎn)在x軸的橢圓
x2
m
+
y2
3
=1
的離心率為
1
2
,則m的值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•泰州三模)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.設(shè)直線AC與BD的交點(diǎn)為P,求動(dòng)點(diǎn)P的軌跡的參數(shù)方程(以t為參數(shù))及普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東莞一模)在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn)為F1(-1,0),且橢圓C的離心率e=
1
2

(1)求橢圓C的方程;
(2)設(shè)橢圓C的上下頂點(diǎn)分別為A1,A2,Q是橢圓C上異于A1,A2的任一點(diǎn),直線QA1,QA2分別交x軸于點(diǎn)S,T,證明:|OS|•|OT|為定值,并求出該定值;
(3)在橢圓C上,是否存在點(diǎn)M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
16
7
相交于不同的兩點(diǎn)A、B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及對應(yīng)的△OAB的面積;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案