|
2 |
4 |
5 |
3 |
5 |
|
x2 |
3 |
2 |
2 |
4
| ||
5 |
3
| ||
5 |
4
| ||
5 |
3
| ||
5 |
4 |
5 |
3 |
5 |
9n2 |
3 |
1 |
2 |
3 |
2 |
1 |
2 |
3 |
2 |
1 |
2 |
3 |
2 |
1 |
2 |
3 |
2 |
x2 |
m |
y2 |
n |
(3y)2 |
m |
y2 |
n |
9n+m |
mn |
mn |
9n+m |
x2 |
m |
y2 |
n |
(3y)2 |
m |
y2 |
n |
9n+m |
mn |
9n+m |
mn |
mn |
9n+m |
|
m |
9n+m |
m |
n |
m |
n |
mn |
9n+m |
m |
n |
m |
n |
科目:高中數學 來源: 題型:
|
2 |
3 |
4 |
3 |
4 |
|
kπ |
2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)
現有變換公式:可把平面直角坐標系上的一點變換到這一平面上的一點.
(1)若橢圓的中心為坐標原點,焦點在軸上,且焦距為,長軸頂點和短軸頂點間的距離為2. 求該橢圓的標準方程,并求出其兩個焦點、經變換公式變換后得到的點和的坐標;
(2) 若曲線上一點經變換公式變換后得到的點與點重合,則稱點是曲線在變換下的不動點. 求(1)中的橢圓在變換下的所有不動點的坐標;
(3) 在(2)的基礎上,試探究:中心為坐標原點、對稱軸為坐標軸的橢圓和雙曲線在變換下的不動點的存在情況和個數.
查看答案和解析>>
科目:高中數學 來源:上海市普陀區(qū)2010屆高三第二次模擬考試數學文 題型:解答題
(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)
現有變換公式:可把平面直角坐標系上的一點變換到這一平面上的一點.
(1)若橢圓的中心為坐標原點,焦點在軸上,且焦距為,長軸頂點和短軸頂點間的距離為2. 求該橢圓的標準方程,并求出其兩個焦點、經變換公式變換后得到的點和的坐標;
(2) 若曲線上一點經變換公式變換后得到的點與點重合,則稱點是曲線在變換下的不動點. 求(1)中的橢圓在變換下的所有不動點的坐標;
(3) 在(2)的基礎上,試探究:中心為坐標原點、對稱軸為坐標軸的橢圓和雙曲線在變換下的不動點的存在情況和個數.
查看答案和解析>>
科目:高中數學 來源:2010年上海市普陀區(qū)高考數學二模試卷 (文科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com