(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)

現(xiàn)有變換公式可把平面直角坐標(biāo)系上的一點變換到這一平面上的一點.

(1)若橢圓的中心為坐標(biāo)原點,焦點在軸上,且焦距為,長軸頂點和短軸頂點間的距離為2. 求該橢圓的標(biāo)準(zhǔn)方程,并求出其兩個焦點、經(jīng)變換公式變換后得到的點的坐標(biāo);

(2) 若曲線上一點經(jīng)變換公式變換后得到的點與點重合,則稱點是曲線在變換下的不動點. 求(1)中的橢圓在變換下的所有不動點的坐標(biāo);

(3) 在(2)的基礎(chǔ)上,試探究:中心為坐標(biāo)原點、對稱軸為坐標(biāo)軸的橢圓和雙曲線在變換下的不動點的存在情況和個數(shù).


解析:

(1)設(shè)橢圓的標(biāo)準(zhǔn)方程為),由橢圓定義知焦距,即…①.

又由條件得…②,故由①、②可解得.

即橢圓的標(biāo)準(zhǔn)方程為.

且橢圓兩個焦點的坐標(biāo)分別為.

對于變換,當(dāng)時,可得

設(shè)分別是由的坐標(biāo)由變換公式變換得到.于是,,即的坐標(biāo)為;

的坐標(biāo)為.

(2)設(shè)是橢圓在變換下的不動點,則當(dāng)時,

,由點,即,得:

,因而橢圓的不動點共有兩個,分別為.

(3)由(2)可知,曲線在變換下的不動點需滿足.

情形一:據(jù)題意,不妨設(shè)橢圓方程為),

則有.

因為,所以恒成立,因此橢圓在變換下的不動點必定存在,且一定有2個不動點.

情形二:設(shè)雙曲線方程為),

則有,

因為,故當(dāng)時,方程無解;[來源:學(xué)?。網(wǎng)Z。X。X。K]

當(dāng)時,故要使不動點存在,則需,

因此,當(dāng)且僅當(dāng)時,雙曲線在變換下一定有2個不動點.否則不存在不動點.

進(jìn)一步分類可知,

(i) 當(dāng)時,.

即雙曲線的焦點在軸上時,需滿足時,雙曲線在變換下一定有2個不動點.否則不存在不動點.

(ii) 當(dāng)時,.

即雙曲線的焦點在軸上時,需滿足時,雙曲線在變換下一定有2個不動點.否則不存在不動點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:上海市嘉定、黃浦區(qū)2010屆高三第二次模擬考試數(shù)學(xué)文 題型:解答題

(本題滿分18分)本題共有3個小題,第1小題滿分3分,第2小題滿分8分,第3小題滿分7分.
已知拋物線為常數(shù)),為其焦點.
(1)寫出焦點的坐標(biāo);
(2)過點的直線與拋物線相交于兩點,且,求直線的斜率;
(3)若線段是過拋物線焦點的兩條動弦,且滿足,如圖所示.求四邊形面積的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省濟(jì)寧市高三第二次月考文科數(shù)學(xué) 題型:解答題

(本題滿分18分)已知拋物線C的頂點在原點,焦點在y軸正半軸上,點到其準(zhǔn)線的距離等于5.

(Ⅰ)求拋物線C的方程;

(Ⅱ)如圖,過拋物線C的焦點的直線從左到右依次與拋物線C及圓交于A、C、D、B四點,試證明為定值;

(Ⅲ)過A、B分別作拋物C的切線交于點M,求面積之和的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市高三模擬考試?yán)砜茢?shù)學(xué) 題型:解答題

(本題滿分18分,其中第1小題4分,第2小題6分,第,3小題8分)

一青蛙從點開始依次水平向右和豎直向上跳動,其落點坐標(biāo)依次是,(如圖所示,坐標(biāo)以已知條件為準(zhǔn)),表示青蛙從點到點所經(jīng)過的路程。

(1) 若點為拋物線準(zhǔn)線上

一點,點均在該拋物線上,并且直線經(jīng)

過該拋物線的焦點,證明.

(2)若點要么落在所表示的曲線上,

要么落在所表示的曲線上,并且,

試寫出(不需證明);

(3)若點要么落在所表示的曲線上,要么落在所表示的曲線上,并且,求的表達(dá)式.

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海市普陀區(qū)2010屆高三第二次模擬考試數(shù)學(xué)文 題型:解答題

(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)

現(xiàn)有變換公式可把平面直角坐標(biāo)系上的一點變換到這一平面上的一點.

(1)若橢圓的中心為坐標(biāo)原點,焦點在軸上,且焦距為,長軸頂點和短軸頂點間的距離為2. 求該橢圓的標(biāo)準(zhǔn)方程,并求出其兩個焦點、經(jīng)變換公式變換后得到的點的坐標(biāo);

(2) 若曲線上一點經(jīng)變換公式變換后得到的點與點重合,則稱點是曲線在變換下的不動點. 求(1)中的橢圓在變換下的所有不動點的坐標(biāo);

(3) 在(2)的基礎(chǔ)上,試探究:中心為坐標(biāo)原點、對稱軸為坐標(biāo)軸的橢圓和雙曲線在變換下的不動點的存在情況和個數(shù).

 

查看答案和解析>>

同步練習(xí)冊答案