設(shè)x=3是函數(shù)f(x)=(x2+ax+b)e3-x(x∈R)的一個極值點(diǎn).
(1)求a與b的關(guān)系式(用a表示b),并求f(x)的單調(diào)區(qū)間;
(2)設(shè)a>0,g(x)=(a2+)ex.若存在ξ1,ξ2∈[0,4]使得|f(ξ1)-?g(ξ2)|<1成立,求a的取值范圍.
解:(1)(x)=-[x2+(a-2)x+b-a]e3-x. 由(3)=0得b=-2a-3. 所以f(x)=(x2+ax-2a-3)e3-x, (x)=-[x2+(a-2)x-3a-3]e3-x 。剑(x-3)(x+a+1)e3-x. 令(x)=0得x1=3,x2=-a-1. 由于x=3是f(x)的極值點(diǎn), 故x1≠x2,即a≠-4. 當(dāng)a<-4時,x1<x2. 故f(x)在(-∞,3]上為減函數(shù),在[3,-a-1]上為增函數(shù),在[-a-1,+∞)上為減函數(shù). 當(dāng)a>-4時,x1>x2,故f(x)在(-∞,-a-1]上為減函數(shù),在[-a-1,3]上為增函數(shù),在[3,+∞)上為減函數(shù). (2)當(dāng)a>0時,-a-1<0,故f(x)在[0,3]上為增函數(shù),在[3,4]上為減函數(shù),因此f(x)在[0,4]上的值域?yàn)閇min{f(0),f(4)},f(3)]=[-(2a+3)e3,a+6]. 而g(x)=(a2+)ex在[0,4]上為增函數(shù),所以值域?yàn)閇a2+,(a2+)e4]. 注意到(a2+)-(a+6)=(a-)2≥0, 故由假設(shè)知 解得0<a<. 故a的取值范圍是(0,). |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:101網(wǎng)校同步練習(xí) 高二數(shù)學(xué) 人教社(新課標(biāo)B 2004年初審?fù)ㄟ^) 人教實(shí)驗(yàn)版 題型:044
設(shè)x=3是函數(shù)f(x)=(x2+ax+b)e3-x(x∈R)的一個極值點(diǎn).
(1)求a與b的關(guān)系式(用a表示b),并求f(x)的單調(diào)區(qū)間;
(2)設(shè)a>0,g(x)=ex.若存在、∈[0,4],使得|f()-g()|<1成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:101網(wǎng)校同步練習(xí) 高二數(shù)學(xué) 人教社(新課標(biāo)B 2004年初審?fù)ㄟ^) 人教實(shí)驗(yàn)版 題型:044
設(shè)x=3是函數(shù)f(x)=(x2+ax+b)e3-x(x∈R)的一個極值點(diǎn).
(1)求a與b的關(guān)系式(用a表示b),并求f(x)的單調(diào)區(qū)間;
(2)設(shè)a>0,g(x)=ex.若存在、∈[0,4],使得|f()-g()|<1成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江西省南昌市2008-2009學(xué)年度高三調(diào)研考試模擬訓(xùn)練理科數(shù)學(xué) 題型:044
設(shè)x=3是函數(shù)f(x)=(x2+ax+b)e3-x(x∈R)的一個極值點(diǎn).
(1)求a與b的關(guān)系式(用a表示b),并求f(x)的單調(diào)區(qū)間;
(2)設(shè)a>0,g(x)=(a2+)ex,若存在ξ1,ξ2∈[0,4],使得|f(ξ1)-g(ξ2)|<1成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河南省許昌四校2012屆高三第一次聯(lián)考數(shù)學(xué)理科試題 題型:044
設(shè)x=3是函數(shù)f(x)=(x2+ax+b)e3-x(x∈R)的一個極值點(diǎn).
(1)求a與b的關(guān)系式(用a表示b),并求f(x)的單調(diào)區(qū)間;
(2)設(shè)a>0,.若存在x1,x2∈[0,4]使得|f(x1)-g(x2)|<1成立,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com