【題目】已知集合A=[2,log2t],集合B={x|y= },
(1)對于區(qū)間[a,b],定義此區(qū)間的“長度”為b﹣a,若A的區(qū)間“長度”為3,試求實數(shù)t的值.
(2)若AB,試求實數(shù)t的取值范圍.
【答案】
(1)解:由題意可得,log2t﹣2=3,即log2t=5,∴t=25=32
(2)解:A=[2,log2t],
由(x﹣2)(5﹣x)≥0,得(x﹣2)(x﹣5)≤0,得2≤x≤5,
∴B=[2,5],
∵AB,
∴若log2t<2,即0<t<4,符合題意;
若t≥4,則log2t≤5,得t≤32,∴4≤t≤32.
綜上,實數(shù)t的取值范圍為(0,32]
【解析】(1)由已知列關于t的等式求得t值;(2)求函數(shù)的定義域得到B,再由AB,分類求解得答案.
【考點精析】解答此題的關鍵在于理解函數(shù)的定義域及其求法的相關知識,掌握求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負)指數(shù)冪的底數(shù)不能為零.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)是定義在區(qū)間[﹣1,1]上的奇函數(shù),且f(1)=1,若對于任意的m、n∈[﹣1,1]有 .
(1)判斷并證明函數(shù)的單調(diào)性;
(2)解不等式 ;
(3)若f(x)≤﹣2at+2對于任意的x∈[﹣1,1],a∈[﹣1,1]恒成立,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(Ⅰ)已知 是空間的兩個單位向量,它們的夾角為60°,設向量 , .求向量 與 的夾角; (Ⅱ)已知 是兩個不共線的向量, .求證: 共面.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)= (a∈R)是奇函數(shù),函數(shù)g(x)= 的定義域為(﹣2,+∞).
(1)求a的值;
(2)若g(x)= 在(﹣2,+∞)上單調(diào)遞減,根據(jù)單調(diào)性的定義求實數(shù)m的取值范圍;
(3)在(2)的條件下,若函數(shù)h(x)=f(x)+g(x)在區(qū)間(﹣1,1)上有且僅有兩個不同的零點,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某產(chǎn)品關稅與市場供應量P的關系近似地滿足:P(x)=2 (其中t為關稅的稅率,且t∈[0, ],x為市場價格,b,k為正常數(shù)),當t= 時,市場供應量曲線如圖所示:
(1)根據(jù)函數(shù)圖象求k,b的值;
(2)若市場需求量Q,它近似滿足Q(x)=2 .當P=Q時的市場價格為均衡價格,為使均衡價格控制在不低于9元的范圍內(nèi),求稅率t的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,橢圓C: (a>b>0)的離心率為,且過點(1,).過橢圓C的左頂點A作直線交橢圓C于另一點P,交直線l:x=m(m>a)于點M.已知點B(1,0),直線PB交l于點N.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若MB是線段PN的垂直平分線,求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動點到定點的距離比到定直線的距離小1.
(Ⅰ)求點的軌跡的方程;
(Ⅱ)過點任意作互相垂直的兩條直線,分別交曲線于點和.設線段, 的中點分別為,求證:直線恒過一個定點;
(Ⅲ)在(Ⅱ)的條件下,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: ()經(jīng)過點,且兩焦點與短軸的一個端點的連線構成等腰直角三角形.
(1)求橢圓的方程;
(2)動直線: (, )交橢圓于、兩點,試問:在坐標平面上是否存在一個定點,使得以為直徑的圓恒過點.若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com