【題目】若一個四位數(shù)的各位數(shù)字相加和為,則稱該數(shù)為“完美四位數(shù)”,如數(shù)字“”.試問用數(shù)字組成的無重復(fù)數(shù)字且大于的“完美四位數(shù)”有( )個

A. B. C. D.

【答案】D

【解析】由題設(shè)中提供的信息可知:和為10四位數(shù)字分別是(0,1,2,7),(0,1,3,6),(0,1,4,5)(0,2,3,5),(1,2,3,4)共五組;其中第一組(0,1,2,7)中,7排首位有種情形,2排首位,1、7排在第二位上時,有種情形,2排首位,0排第二位,7排第三位有1種情形,共種情形符合題設(shè);第二、三組中3,、6與4、5分別排首位各有種情形,共有種情形符合題設(shè);第四、五組中2、3、5與2、3、4分別排首位各有種情形,共有種情形符合題設(shè)。依據(jù)分類計數(shù)原理可符合題設(shè)條件的完美四位數(shù)共有種,應(yīng)選答案D。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足an+1= an+t,a1= (t為常數(shù),且t≠ ).
(1)證明:{an﹣2t}為等比數(shù)列;
(2)當(dāng)t=﹣ 時,求數(shù)列{an}的前幾項和最大?
(3)當(dāng)t=0時,設(shè)cn=4an+1,數(shù)列{cn}的前n項和為Tn , 若不等式 ≥2n﹣7對任意的n∈N*恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是等差數(shù)列,是等比數(shù)列,且,則下列結(jié)論正確的是( )

A. B.

C. D. ,使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 的單調(diào)遞減區(qū)間為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在海島A上有一座海拔1千米的山,山頂設(shè)有一個觀察站P,上午11時,測得一輪船在島北偏東30°,俯角為30°的B處,到11時10分又測得該船在島北偏西60°,俯角為60°的C處.
(1)求船的航行速度是每小時多少千米?
(2)又經(jīng)過一段時間后,船到達海島的正西方向的D處,問此時船距島A有多遠(yuǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知梯形ABCD是直角梯形,按照斜二測畫法畫出它的直觀圖A′B′C′D′(如圖所示),其中A′D′=2,B′C′=4,A′B′=1,則直角梯形DC邊的長度是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 是平行四邊行, 平面, // , ,

(1)證明: //平面;

(2)求證:平面平面

(3)求直線與平面所成角的正弦值;

(4)求二面角 的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若圓上有四個不同的點到直線的距離為2,則的取值范圍是(  )

A. (-12,8) B. (-8,12) C. (-13,17) D. (-17,13)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著互聯(lián)網(wǎng)的發(fā)展,移動支付(又稱手機支付)越來越普通,某學(xué)校興趣小組為了了解移動支付在大眾中的熟知度,對15-65歲的人群隨機抽樣調(diào)查,調(diào)查的問題是“你會使用移動支付嗎?”其中,回答“會”的共有個人.把這個人按照年齡分成5組:第1組,第2組,第3組,第4組,第5組,然后繪制成如圖所示的頻率分布直方圖.其中,第一組的頻數(shù)為20.

(1)求的值,并根據(jù)頻率分布直方圖估計這組數(shù)據(jù)的眾數(shù);

(2)從第1,3,4組中用分層抽樣的方法抽取6人,求第1,3,4組抽取的人數(shù);

(3)在(2)抽取的6人中再隨機抽取2人,求所抽取的2人來自同一個組的概率.

查看答案和解析>>

同步練習(xí)冊答案