設橢圓的左、右焦點分別為,上頂點為,離心率為 , 在軸負半軸上有一點,且

(1)若過三點的圓 恰好與直線相切,求橢圓C的方程;

(2)在(1)的條件下,過右焦點作斜率為的直線與橢圓C交于兩點,在軸上是否存在點,使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍;如果不存在,說明理由.

 

【答案】

(1);(2)存在滿足題意的點的取值范圍是。

【解析】

試題分析:(1)由題意,得,所以 

  由于,所以的中點,

所以

所以的外接圓圓心為,半徑  3分

又過三點的圓與直線相切,

所以解得,

所求橢圓方程為   6分

(2)有(1)知,設的方程為:

將直線方程與橢圓方程聯(lián)立

,整理得

設交點為,因為

  8分

若存在點,使得以為鄰邊的平行四邊形是菱形,

由于菱形對角線垂直,所以

 

的方向向量是,故,則

,即

由已知條件知  11分

,故存在滿足題意的點的取值范圍 是  13分

考點:本題主要考查橢圓標準方程,直線方程,直線與橢圓的位置關系,存在性問題研究,平面向量的坐標運算。

點評:難題,曲線關系問題,往往通過聯(lián)立方程組,得到一元二次方程,運用韋達定理。本題求橢圓標準方程時,主要運用了橢圓的幾何性質。對于存在性問題,往往先假設存在,利用已知條件加以探究,以明確計算的合理性。本題(III)通過確定m的表達式,利用函數(shù)思想,通過求函數(shù)的最值,確定得到其范圍。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知中心在坐標原點、焦點在x軸上橢圓的離心率e=
3
3
,以原點為圓心,橢圓的短半軸長為半徑的圓與直線y=x+2相切.
(1)求該橢圓的標準方程;
(2)設橢圓的左,右焦點分別是F1和F2,直線l1過F2且與x軸垂直,動直線l2與y軸垂直,l2交l1于點P,求線段PF1的垂直平分線與l2的交點M的軌跡方程,并指明曲線類型.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年四川卷理)設橢圓的左、右焦點分別是、,離心率,右準線上的兩動點、,且

(Ⅰ)若,求的值;

(Ⅱ)當最小時,求證共線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分) 已知橢圓的離心率,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切。(I)求a與b;(II)設橢圓的左,右焦點分別是F1和F2,直線且與x軸垂直,動直線軸垂直,于點P,求線段PF1的垂直平分線與的交點M的軌跡方程,并指明曲線類型。

查看答案和解析>>

科目:高中數(shù)學 來源:四川省高考真題 題型:解答題

設橢圓的左、右焦點分別是F1、F2,離心率,右準線l上的兩動點M、N,且,
(Ⅰ)若,求a、b的值;
(Ⅱ)當最小時,求證共線。

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年安徽省黃山市休寧中學高三(上)數(shù)學綜合練習試卷1(文科)(解析版) 題型:解答題

已知中心在坐標原點、焦點在x軸上橢圓的離心率,以原點為圓心,橢圓的短半軸長為半徑的圓與直線y=x+2相切.
(1)求該橢圓的標準方程;
(2)設橢圓的左,右焦點分別是F1和F2,直線l1過F2且與x軸垂直,動直線l2與y軸垂直,l2交l1于點P,求線段PF1的垂直平分線與l2的交點M的軌跡方程,并指明曲線類型.

查看答案和解析>>

同步練習冊答案