某地方政府準(zhǔn)備在一塊面積足夠大的荒地上建一如圖所示的一個(gè)矩形綜合性休閑廣場(chǎng),其總面積為3000平方米,其中場(chǎng)地四周(陰影部分)為通道,通道寬度均為2米,中間的三個(gè)矩形區(qū)域?qū)佋O(shè)塑膠地面作為運(yùn)動(dòng)場(chǎng)地(其中兩個(gè)小場(chǎng)地形狀相同),塑膠運(yùn)動(dòng)場(chǎng)地占地面積為S平方米.
(1)分別寫(xiě)出用x表示y和S的函數(shù)關(guān)系式(寫(xiě)出函數(shù)定義域);
(2)怎樣設(shè)計(jì)能使S取得最大值,最大值為多少?
(1)y=(6<x<500).S=3030-,6<x<500.
(2)x=50 m,y=60 m時(shí),最大面積是2430 m2.
解析試題分析:(1)解實(shí)際問(wèn)題應(yīng)用題,關(guān)鍵正確理解題意,列出函數(shù)關(guān)系式,注意交代定義域. 由已知xy=3000,2a+6=y(tǒng)∴x>6,y>6,故y=,由y>6,解得x<500,∴y=(6<x<500).S=(x-4)a+(x-6)a=(2x-10)a,根據(jù)2a+6=y(tǒng),得a=-3=-3,∴S=(2x-10)=3030-,6<x<500.(2)由基本不等式求最值,注意等于號(hào)取值情況.S=3030-≤3030-2=3030-2×300=2430,當(dāng)且僅當(dāng)6x=,即x=50時(shí)等號(hào)成立,此時(shí)y=60.
解:(1)由已知xy=3000,2a+6=y(tǒng)∴x>6,y>6,故y=,
由y>6,解得x<500,∴y=(6<x<500).
S=(x-4)a+(x-6)a=(2x-10)a,
根據(jù)2a+6=y(tǒng),得a=-3=-3,
∴S=(2x-10)=3030-,6<x<500.
(2)S=3030-≤3030-2=3030-2×300=2430,
當(dāng)且僅當(dāng)6x=,即x=50時(shí)等號(hào)成立,此時(shí)y=60.
所以,矩形場(chǎng)地x=50 m,y=60 m時(shí),運(yùn)動(dòng)場(chǎng)的面積最大,最大面積是2430 m2.
考點(diǎn):函數(shù)應(yīng)用題,基本不等式求最值
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知定義域?yàn)镽的函數(shù)f(x)為奇函數(shù),且滿(mǎn)足f(x+2)=-f(x),當(dāng)x∈[0,1]時(shí),f(x)=2x-1.
(1)求f(x)在[-1,0)上的解析式;
(2)求f(24)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)中,為奇數(shù),均為整數(shù),且均為奇數(shù).求證:無(wú)整數(shù)根。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知的三內(nèi)角分別為,向量
,記函數(shù).
(1)若,求的面積;
(2)若關(guān)于的方程有兩個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,某機(jī)場(chǎng)建在一個(gè)海灣的半島上,飛機(jī)跑道AB的長(zhǎng)為4.5km,且跑道所在的直線(xiàn)與海岸線(xiàn)l的夾角為60o(海岸線(xiàn)可以看作是直線(xiàn)),跑道上離海岸線(xiàn)距離最近的點(diǎn)B到海岸線(xiàn)的距離BC=4km.D為海灣一側(cè)海岸線(xiàn)CT上的一點(diǎn),設(shè)CD=x(km),點(diǎn)D對(duì)跑道AB的視角為q.
(1)將tanq表示為x的函數(shù);
(2)求點(diǎn)D的位置,使q取得最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(1)若函數(shù)的圖象切x軸于點(diǎn)(2,0),求a、b的值;
(2)設(shè)函數(shù)的圖象上任意一點(diǎn)的切線(xiàn)斜率為k,試求的充要條件;
(3)若函數(shù)的圖象上任意不同的兩點(diǎn)的連線(xiàn)的斜率小于l,求證.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)的圖象過(guò)點(diǎn).
(1)求實(shí)數(shù)的值;
(2)求函數(shù)的最小正周期及最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)是實(shí)數(shù),函數(shù)().
(1)求證:函數(shù)不是奇函數(shù);
(2)當(dāng)時(shí),求滿(mǎn)足的的取值范圍;
(3)求函數(shù)的值域(用表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間.
(2)若方程有4個(gè)不同的實(shí)根,求的范圍?
(3)是否存在正數(shù),使得關(guān)于的方程有兩個(gè)不相等的實(shí)根?如果存在,求b滿(mǎn)足的條件,如果不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com