在平面直角坐標(biāo)系xoy中,拋物線y=x2上異于坐標(biāo)原點(diǎn)O的兩不同點(diǎn)A,B滿足OA⊥OB,則直線AB必過定點(diǎn)( )
A.(1,0)
B.(0,1)
C.(2,0)
D.(0,2)
【答案】分析:設(shè)出AB的方程,A,B的坐標(biāo),進(jìn)而把直線與拋物線方程聯(lián)立消去y,根據(jù)韋達(dá)定理求得x1+x2和x1x2的表達(dá)式,進(jìn)而利用拋物線方程求得y1y2=的表達(dá)式,進(jìn)而根據(jù)AO⊥BO推斷出x1x2+y1y2=0,求得b,即可求出結(jié)果.
解答:解:顯然直線AB的斜率存在,記為k,AB的方程記為:y=kx+b,(b≠0),A(x1,y1),B(x2,y2),將直線方程代入y=x2得:x2-kx-b=0,則有:
△=k2+4b>0①,x1+x2=k②,x1x2=-b③,又y1=x12,y2=x22
∴y1y2=b2;
∵AO⊥BO,∴x1x2+y1y2=0,
得:-b+b2=0且b≠0,
∴b=1,
∴直線AB比過定點(diǎn)(0,1)
故選B.
點(diǎn)評(píng):本題主要考查了拋物線的簡(jiǎn)單性質(zhì),涉及到直線與圓錐線的問題一般是聯(lián)立方程,設(shè)而不求,屬于中檔題.