【題目】若項數(shù)為的單調增數(shù)列滿足:①;②對任意,存在使得;則稱數(shù)列具有性質.

1)分別判斷數(shù)列1,3,471,2,3,5是否具有性質,并說明理由;

2)若數(shù)列具有性質,且.

i)證明數(shù)列的項數(shù);

ii)求數(shù)列中所有項的和的最小值.

【答案】1)數(shù)列1,34,7不具備性質P,數(shù)列1,23,5具有性質;(2)(i)證明見解析,(ii75

【解析】

1)根據(jù)定義驗證即可得解;

2)(i)根據(jù)數(shù)列關系分析,結合,即可得到,即可得證;

ii)構造數(shù)列:1,2,4,5,9,18,36,或1,2,3,6,9,18,36,再證明75是最小值.

1)因為,數(shù)列13,47不具備性質P,

,所以數(shù)列1,2,3,5具有性質;

2)(i)證明:數(shù)列單調遞增,具有性質,且,

所以,即,所以,

所以

所以;

ii)構造數(shù)列:1,2,4,5,9,18,36,或1,2,3,6,9,18,36,顯然這兩個數(shù)列滿足性質,

且數(shù)列之和均為75,下面說明75為數(shù)列中所有項的和的最小值,

18在數(shù)列中,要求數(shù)列中的所有項的和最小,則,

18不在數(shù)列中,,由(i)可知

數(shù)列所有項之和,

所以要使所有項之和最小,必有

同理可得要使數(shù)列中所有項的和最小,必有

同理可得:5

依次類推,要使數(shù)列中的所有項的和最小,該數(shù)列為1,2,4,5,9,18,36,或1,2,3,6,9,18,36,

綜上所述:數(shù)列中所有項的和的最小值為75.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知圓的圓心為,圓的圓心為,一動圓與圓內切,與圓外切.

(1)求動圓圓心的軌跡方程;

(2)過點的直線與曲線交于,兩點,點是直線上任意點,直線,,的斜率分別為,,,試探求,,的關系,并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓的左焦點為,點在橢圓.

1)求橢圓的方程;

2)已知圓,連接并延長交圓于點為橢圓長軸上一點(異于左、右焦點),過點作橢圓長軸的垂線分別交橢圓和圓于點均在軸上方).連接,記的斜率為,的斜率為.

①求的值;

②求證:直線的交點在定直線上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓,四點,,中恰有三點在橢圓.

1)求的方程;

2)設的短軸端點分別為,,直線,兩點,交軸于點,若,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某區(qū)“創(chuàng)文明城區(qū)”簡稱“創(chuàng)城”活動中,教委對本區(qū)AB,C,D四所高中校按各校人數(shù)分層抽樣調查,將調查情況進行整理后制成如表:

學校

A

B

C

D

抽查人數(shù)

50

15

10

25

“創(chuàng)城”活動中參與的人數(shù)

40

10

9

15

注:參與率是指:一所學!皠(chuàng)城”活動中參與的人數(shù)與被抽查人數(shù)的比值

假設每名高中學生是否參與“創(chuàng)城”活動是相互獨立的.

若該區(qū)共2000名高中學生,估計A學校參與“創(chuàng)城”活動的人數(shù);

在隨機抽查的100名高中學生中,從A,C兩學校抽出的高中學生中各隨機抽取1名學生,求恰有1人參與“創(chuàng)城”活動的概率;

若將表中的參與率視為概率,從A學校高中學生中隨機抽取3人,求這3人參與“創(chuàng)城”活動人數(shù)的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)當時,求在區(qū)間上的最大值和最小值;

2)若對恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某超市從年甲、乙兩種酸奶的日銷售量(單位:箱)的數(shù)據(jù)中分別隨機抽取個,并按、、、分組,得到頻率分布直方圖如圖,假設甲、乙兩種酸奶獨立銷售且日銷售量相互獨立.

1)寫出頻率分布直方圖甲中的的值;記甲種酸奶與乙種酸奶日銷售量(單位:箱)的方差分別為、,試比較的大;(只需寫出結論)

2)估計在未來的某一天里,甲、乙兩種酸奶的銷售量恰有一個高于箱且另一個不高于箱的概率;

3)設表示在未來天內甲種酸奶的日銷售量不高于箱的天數(shù),以日留住量落入各組的頻率為概率,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,雙曲線的右頂點為A,右焦點為F,點B在雙曲線的右支上,矩形OFBD與矩形AEGF相似,且矩形OFBD與矩形AEGF的面積之比為21,則該雙曲線的離心率為

A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓b0〕與拋物線有共同的焦點F,且兩曲線在第一象限的交點為M,滿足.

1)求橢圓的方程;

2)過點,斜率為的直線與橢圓交于兩點,設,假設,求的取值范圍.

查看答案和解析>>

同步練習冊答案