【題目】如圖,雙曲線的右頂點(diǎn)為A,右焦點(diǎn)為F,點(diǎn)B在雙曲線的右支上,矩形OFBD與矩形AEGF相似,且矩形OFBD與矩形AEGF的面積之比為2:1,則該雙曲線的離心率為
A.
B.
C.
D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】汽車尾氣中含有一氧化碳,碳?xì)浠衔?/span>等污染物,是環(huán)境污染的主要因素之一,汽車在使用若干年之后排放的尾氣之中的污染物會出現(xiàn)遞增的現(xiàn)象,所以國家根據(jù)機(jī)動車使用和安全技術(shù)、排放檢驗(yàn)狀況,對達(dá)到報廢標(biāo)準(zhǔn)的機(jī)動車實(shí)施強(qiáng)制報廢,某環(huán)境組織為了解公眾對機(jī)動車強(qiáng)制報廢標(biāo)準(zhǔn)的了解情況,隨機(jī)調(diào)查了人,所得數(shù)據(jù)制成如下列聯(lián)表:
(1)若從這人中任選人,選到了解強(qiáng)制報廢標(biāo)準(zhǔn)的人的概率為,問是否在犯錯的概率不超過5﹪的前提下認(rèn)為“機(jī)動車強(qiáng)制報廢標(biāo)準(zhǔn)是否了解與性別有關(guān)”?
(2)該環(huán)保組織從相關(guān)部門獲得某型號汽車的使用年限與排放的尾氣中濃度的數(shù)據(jù),并制成如圖所示的折線圖,若該型號汽車的使用年限不超過年,可近似認(rèn)為排放的尾氣中濃度﹪與使用年限線性相關(guān),確定與的回歸方程,并預(yù)測該型號的汽車使用年排放尾氣中的濃度是使用年的多少倍.
附:,
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)有一塊三角形空地,如圖△ABC,其中AC=180米,BC=90米,∠C=90°,開發(fā)商計(jì)劃在這片空地上進(jìn)行綠化和修建運(yùn)動場所,在△ABC內(nèi)的P點(diǎn)處有一服務(wù)站(其大小可忽略不計(jì)),開發(fā)商打算在AC邊上選一點(diǎn)D,然后過點(diǎn)P和點(diǎn)D畫一分界線與邊AB相交于點(diǎn)E,在△ADE區(qū)域內(nèi)綠化,在四邊形BCDE區(qū)域內(nèi)修建運(yùn)動場所. 現(xiàn)已知點(diǎn)P處的服務(wù)站與AC距離為10米,與BC距離為100米. 設(shè)米,試問取何值時,運(yùn)動場所面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記拋物線的焦點(diǎn)為,點(diǎn)在拋物線上,,斜率為的直線與拋物線交于兩點(diǎn).
(1)求的最小值;
(2)若,直線的斜率都存在,且;探究:直線是否過定點(diǎn),若是,求出定點(diǎn)坐標(biāo);若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國家的精準(zhǔn)扶貧極大地激發(fā)了農(nóng)村貧困村民的生產(chǎn)積極性.新春伊始,某村計(jì)劃利用2019年國家專項(xiàng)扶貧款120萬元興建兩個扶貧產(chǎn)業(yè):毛驢養(yǎng)殖和蔬菜溫室大棚.建一個養(yǎng)殖場的費(fèi)用是9萬元,建一個溫室大棚的費(fèi)用是12萬元.根據(jù)村民意愿,養(yǎng)殖場至少要建3個,溫室大棚至少要建2個,并且由于建設(shè)用地的限制,養(yǎng)殖場的數(shù)量不能超過溫室大棚數(shù)量的2倍,則建養(yǎng)殖場和溫室大棚個數(shù)之和的最大值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(I)當(dāng)時,求過點(diǎn)(0,1)且和曲線相切的直線方程;
(2)若函數(shù)在上有兩個不同的零點(diǎn),求實(shí)致的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),在點(diǎn)處的切線方程為.
(Ⅰ)求的值;
(Ⅱ)已知,當(dāng)時,恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)對于在中的任意一個常數(shù),是否存在正數(shù),使得,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線過點(diǎn),圓:,直線與圓交于兩點(diǎn).
() 求直線的方程;
()求直線的斜率的取值范圍;
(Ⅲ)是否存在過點(diǎn)且垂直平分弦的直線?若存在,求直線斜率的值,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com