函數(shù)f(x)=
3x-4
ax2+4ax+3
的定義域?yàn)镽,那么a的取值范圍是
 
分析:根據(jù)函數(shù)的定義域是R,轉(zhuǎn)化為ax2+4ax+3≠0恒成立,然后解不等式即可.
解答:解:∵函數(shù)f(x)=
3x-4
ax2+4ax+3
的定義域?yàn)镽,
∴ax2+4ax+3≠0恒成立,
當(dāng)a=0時(shí),不等式等價(jià)為3≠0,滿(mǎn)足條件.
當(dāng)a≠0時(shí),要使不等式恒成立,則△<0,
即16a2-4×3a<0,
∴4a2-3a<0,
即0<a<
3
4
,
綜上:0≤a<
3
4
,
故答案為:[0,
3
4
)
點(diǎn)評(píng):本題主要考查函數(shù)定義域的應(yīng)用,將函數(shù)定義域轉(zhuǎn)化為不等式恒成立是解決本題的關(guān)鍵,主要對(duì)于a要進(jìn)行討論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)F(x)=
3x-2
2x-1
,(x≠
1
2
)

(I)求F(
1
2013
)+F(
2
2013
)+F(
3
2013
)+…+F(
2012
2013
)

(II)已知數(shù)列滿(mǎn)足a1=2,an+1=F(an),求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ) 求證:a1a2a3…an
2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=3x+log
1
2
(-x)
的零點(diǎn)所在區(qū)間為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3x-13x+1

(1)證明f(x)為奇函數(shù);
(2)判斷f(x)的單調(diào)性,并用定義加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

記函數(shù)f(x)的定義域?yàn)镈,若存在x0∈D,使f(x0)=x0成立,則稱(chēng)以(x0,y0)為坐標(biāo)的點(diǎn)是函數(shù)f(x)的圖象上的“穩(wěn)定點(diǎn)”.
(1)若函數(shù)f(x)=
3x-1x+a
的圖象上有且只有兩個(gè)相異的“穩(wěn)定點(diǎn)”,試求實(shí)數(shù)a的取值范圍;
(2)已知定義在實(shí)數(shù)集R上的奇函數(shù)f(x)存在有限個(gè)“穩(wěn)定點(diǎn)”,求證:f(x)必有奇數(shù)個(gè)“穩(wěn)定點(diǎn)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
3x,x∈(-∞,1]
log81x,x∈(1,+∞).
f(f(
1
4
))
的值為
1
16
1
16

查看答案和解析>>

同步練習(xí)冊(cè)答案