已知函數(shù)f(x)=
3x-13x+1

(1)證明f(x)為奇函數(shù);
(2)判斷f(x)的單調(diào)性,并用定義加以證明.
分析:(1)直接檢驗(yàn)f(-x)與f(x)的關(guān)系即可進(jìn)行判斷
(2)先設(shè)x1<x2,然后利用作差法比較f(x1)與f(x2)的大小即可
解答:解:(1)證明:函數(shù)的定義域?yàn)镽
∵f(-x)=
3-x-1
3-x+1
=
1-3x
1+3x
=-f(x)
∴f(x)為奇函數(shù)
(2)在定義域上是單調(diào)增函數(shù);
設(shè)x1<x2
f(x)=
3x-1
3x+1
=1-
2
3x+1

∴f(x1)-f(x2)=
2
3x2+1
-
2
3x1+1
=
2(3x1-3x2)
(1+3x1)(1+3x2)

∵x1<x2
∴0<3x13x2
∴f(x1)-f(x2)<0即f(x1)<f(x2
∴f(x)單調(diào)遞增
點(diǎn)評:本題主要考查了 函數(shù)的奇偶性及函數(shù)的單調(diào)性的簡單應(yīng)用,解題的關(guān)鍵是熟練掌握基本定義
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(3-a)x-3 (x≤7)
ax-6??? (x>7)
,數(shù)列an滿足an=f(n)(n∈N*),且an是遞增數(shù)列,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3-ax
,若f(x)在區(qū)間(0,1]上是減函數(shù),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3-2sin2ωx-2cos(ωx+
π
2
)cosωx(0<ω≤2)
的圖象過點(diǎn)(
π
16
,2+
2
)

(Ⅰ)求ω的值及使f(x)取得最小值的x的集合;
(Ⅱ)該函數(shù)的圖象可由函數(shù)y=
2
sin4x(x∈R)
的圖象經(jīng)過怎樣的變換得出?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|3-
1x
|,x∈(0,+∞)

(1)寫出f(x)的單調(diào)區(qū)間;
(2)是否存在實(shí)數(shù)a,b(0<a<b)使函數(shù)y=f(x)定義域值域均為[a,b],若存在,求出a,b的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x-
π
3
)=sinx,則f(π)
等于(  )

查看答案和解析>>

同步練習(xí)冊答案