【題目】如圖,在四棱錐中, 底面為菱形,平面,點在棱上.
(Ⅰ)求證:直線平面;
(Ⅱ)若平面,求證:;
(Ⅲ)是否存在點,使得四面體的體積等于四面體的體積的?若存在,求出的值;若不存在,請說明理由.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,有下列說法:
①若f(a)f(b)>0,則函數(shù)y=f(x)在區(qū)間(a,b)上沒有零點;
②若f(a)f(b)>0,則函數(shù)y=f(x)在區(qū)間(a,b)上可能有零點;
③若f(a)f(b)<0,則函數(shù)y=f(x)在區(qū)間(a,b)上沒有零點;
④若f(a)f(b)<0,則函數(shù)y=f(x)在區(qū)間(a,b)上至少有一個零點;
其中正確說法的序號是(把所有正確說法的序號都填上).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點到點和直線l: 的距離相等.
(Ⅰ)求動點的軌跡E的方程;
(Ⅱ)已知不與垂直的直線與曲線E有唯一公共點A,且與直線的交點為,以AP為直徑作圓.判斷點和圓的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列各組函數(shù)中,表示同一函數(shù)的是( )
A.
與g(x)=x﹣1
B.f(x)=2|x|與
C.
與
D.
與
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過橢圓的左頂點作斜率為2的直線,與橢圓的另一個交點為,與軸的交點為,已知.
(1)求橢圓的離心率;
(2)設(shè)動直線與橢圓有且只有一個公共點,且與直線相交于點,若軸上存在一定點,使得,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方形與直角梯形所在平面互相垂直, , , .
(I)求證: 平面.
(II)求證: 平面.
(III)求四面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國Ⅳ標(biāo)準(zhǔn)規(guī)定:輕型汽車的屢氧化物排放量不得超過80mg/km.根據(jù)這個標(biāo)準(zhǔn),檢測單位從某出租車公司運營的A、B兩種型號的出租車中分別抽取5輛,對其氮氧化物的排放量進(jìn)行檢測,檢測結(jié)果記錄如表(單位:mg/km)
A | 85 | 80 | 85 | 60 | 90 |
B | 70 | x | 95 | y | 75 |
由于表格被污損,數(shù)據(jù)x,y看不清,統(tǒng)計員只記得A、B兩種出租車的氮氧化物排放量的平均值相等,方差也相等.
(1)求表格中x與y的值;
(2)從被檢測的5輛B種型號的出租車中任取2輛,記“氮氧化物排放量超過80mg/km”的車輛數(shù)為X,求X=1時的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com