【題目】已知過拋物線y2=2px(p>0)的焦點,斜率為2的直線交拋物線于A(x1 , y1)和B(x2 , y2)(x1<x2)兩點,且|AB|=9,
(1)求該拋物線的方程;
(2)O為坐標原點,C為拋物線上一點,若=+λ , 求λ的值.
【答案】解:(1)直線AB的方程是y=2(x﹣),與y2=2px聯(lián)立,有4x2﹣5px+p2=0,
∴x1+x2=
由拋物線定義得:|AB|=x1+x2+p=9
∴p=4,∴拋物線方程是y2=8x.
(2)由p=4,4x2﹣5px+p2=0得:x2﹣5x+4=0,
∴x1=1,x2=4,
y1=﹣2,y2=4,從而A(1,﹣2),B(4,4).
設(shè)=(x3 , y3)=(1,﹣2)+λ(4,4)=(4λ+1,4λ﹣2)
又[2(2λ﹣1)]2=8(4λ+1),解得:λ=0,或λ=2.
【解析】(1)直線AB的方程與y2=2px聯(lián)立,有4x2﹣5px+p2=0,從而x1+x2= , 再由拋物線定義得:|AB|=x1+x2+p=9,求得p,則拋物線方程可得.
(2)由p=4,4x2﹣5px+p2=0求得A(1,﹣2),B(4,4).再求得設(shè)的坐標,最后代入拋物線方程即可解得λ.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)x,y,a∈R* , 且當x+2y=1時, + 的最小值為6 ,則當 + =1時,3x+ay的最小值是( )
A.6
B.6
C.12
D.12
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個命題:
①函數(shù)y=|x|與函數(shù)y=( )2表示同一個函數(shù);
②奇函數(shù)的圖象一定通過直角坐標系的原點;
③若函數(shù)f(x)的定義域為[0,2],則函數(shù)f(2x)的定義域為[0,4];
④設(shè)函數(shù)f(x)是在區(qū)間[a,b]上圖象連續(xù)的函數(shù),且f(a)f(b)<0,則方程f(x)=0在區(qū)間[a,b]上至少有一實根;
其中正確命題的序號是(填上所有正確命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log4(4x+1)+kx,(k∈R)為偶函數(shù).
(1)求k的值;
(2)若方程f(x)=log4(a2x﹣a)有且只有一個根,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)全集U=R,A={x|x2+px+12=0},B={x|x2﹣5x+q=0},若(UA)∩B={2},A∩(UB)={4},求A∪B.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=3x , f(a+2)=27,函數(shù)g(x)=λ2ax﹣4x的定義域為[0,2].
(1)求a的值;
(2)若λ=2,試判斷函數(shù)g(x)在[0,2]上的單調(diào)性,并加以證明;
(3)若函數(shù)g(x)的最大值是 ,求λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐D﹣ABC中,已知△BCD是正三角形,平面ABC⊥平面BCD,AB=BC=a,AC= a,E為BC的中點,F(xiàn)在棱AC上,且AF=3FC.
(1)求三棱錐D﹣ABC的體積;
(2)求證:AC⊥平面DEF;
(3)若M為DB中點,N在棱AC上,且CN= CA,求證:MN∥平面DEF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com