(2012•泉州模擬)已知函數(shù)y=f(x)在區(qū)間[a,b]上均有意義,且A、B是其圖象上橫坐標分別為a、b的兩點.對應于區(qū)間[0,1]內(nèi)的實數(shù)λ,取函數(shù)y=f(x)的圖象上橫坐標為x=λa+(1-λ)b的點M,和坐標平面上滿足
MN
MA
+(1-λ)
MB
的點N,得
MN
.對于實數(shù)k,如果不等式|MN|≤k對λ∈[0,1]恒成立,那么就稱函數(shù)f(x)在[a,b]上“k階線性近似”.若函數(shù)y=x2+x在[1,2]上“k階線性近似”,則實數(shù)k的取值范圍為(  )
分析:先得出M、N橫坐標相等,將恒成立問題轉(zhuǎn)化為求函數(shù)的最值問題.
解答:解:由題意,M、N橫坐標相等,不等式|MN|≤k對λ∈[0,1]恒成立,則k≥|MN|的最大值.
由A、B是其圖象上橫坐標分別為a、b的兩點,則A(1,2),(2,6)
∴AB方程為y-6=
6-2
2-1
×(x-2),即y=4x-2
由圖象可知,|MN|=4x-2-(x2+x)=-(x-
3
2
2+
1
4
1
4

∴k≥
1
4

故選C.
點評:本題考查新定義,解答的關鍵是將已知條件進行轉(zhuǎn)化,同時應注意恒成立問題的處理策略.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•泉州模擬)已知f0(x)=x•ex,f1(x)=f′0(x),f2(x)=f′1(x),…,fn(x)=f′n-1(x)(n∈N*).
(Ⅰ)請寫出fn(x)的表達式(不需證明);
(Ⅱ)設fn(x)的極小值點為Pn(xn,yn),求yn;
(Ⅲ)設gn(x)=-x2-2(n+1)x-8n+8,gn(x)的最大值為a,fn(x)的最小值為b,試求a-b的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•泉州模擬)下列函數(shù)中,既是偶函數(shù),且在區(qū)間(0,+∞)內(nèi)是單調(diào)遞增的函數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•泉州模擬)已知集合A={1,2,3},B={x|x2-x-2=0,x∈R},則A∩B為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•泉州模擬)設函數(shù)f(x)=ax2+lnx.
(Ⅰ)當a=-1時,求函數(shù)y=f(x)的圖象在點(1,f(1))處的切線方程;
(Ⅱ)已知a<0,若函數(shù)y=f(x)的圖象總在直線y=-
12
的下方,求a的取值范圍;
(Ⅲ)記f′(x)為函數(shù)f(x)的導函數(shù).若a=1,試問:在區(qū)間[1,10]上是否存在k(k<100)個正數(shù)x1,x2,x3…xk,使得f′(x1)+f'(x2)+f′(x3)+…+f′(xk)≥2012成立?請證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•泉州模擬)設函數(shù)y=f(x)的定義域為D,若對于任意x1,x2∈D且x1+x2=2a,恒有f(x1)+f(x2)=2b,則稱點(a,b)為函數(shù)y=f(x)圖象的對稱中心.研究并利用函數(shù)f(x)=x3-3x2-sin(πx)的對稱中心,可得f(
1
2012
)+f(
2
2012
)+…+f(
4022
2012
)+f(
4023
2012
)
=( 。

查看答案和解析>>

同步練習冊答案