【題目】已知函數(shù)

(1)當(dāng)時(shí),判斷函數(shù)的單調(diào)性;

(2)當(dāng)有兩個(gè)極值點(diǎn)時(shí),求a的取值范圍,并證明的極大值大于2.

【答案】(1)為(0,+∞)上的減函數(shù).(2)見解析

【解析】

1)求出函數(shù)的導(dǎo)數(shù),法1:結(jié)合二次函數(shù)的性質(zhì)判斷導(dǎo)函數(shù)的符號(hào),求出函數(shù)的單調(diào)性即可;法2:令hx=-x2+3x-3ex-a,根據(jù)函數(shù)的單調(diào)性求出hx)的最大值,判斷即可;(2)令hx=-x2+3x-3ex-a,求出函數(shù)的導(dǎo)數(shù),根據(jù)函數(shù)的單調(diào)性得到hx=0有兩不等實(shí)數(shù)根x1,x2x1x2),求出a的范圍,求出fx)的極大值判斷即可.

(1)由題知

方法1:由于,,

,所以,從而

于是為(0,+∞)上的減函數(shù).

方法2:令,則,

當(dāng)時(shí),為增函數(shù);當(dāng)時(shí),,為減函數(shù).

.由于,所以,

于是為(0,+∞)上的減函數(shù).

(2)令,則,

當(dāng)時(shí),為增函數(shù);當(dāng)時(shí),, 為減函數(shù).

當(dāng)x趨近于時(shí), 趨近于

由于有兩個(gè)極值點(diǎn),所以有兩不等實(shí)根,即有兩不等實(shí)數(shù)根).

則有解得.可知,

,則

當(dāng) 時(shí),,單調(diào)遞減;當(dāng) 時(shí),,單調(diào)遞增;當(dāng) 時(shí),單調(diào)遞減.

則函數(shù)時(shí)取極小值,時(shí)取極大值.

,

,即

所以極大值.當(dāng)時(shí),恒成立,

上的減函數(shù),所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,橢圓M:(ab>0)的離心率為,左右頂點(diǎn)分別為A,B,線段AB的長(zhǎng)為4.P在橢圓M上且位于第一象限,過(guò)點(diǎn)A,B分別作l1⊥PA,l2⊥PB,直線l1,l2交于點(diǎn)C.

(1)若點(diǎn)C的橫坐標(biāo)為﹣1,求P點(diǎn)的坐標(biāo);

(2)直線l1與橢圓M的另一交點(diǎn)為Q,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱柱中,,,的中點(diǎn).

(1)證明:;

(2),點(diǎn)在平面的射影在上,且與平面所成角的正弦值為,求三棱柱的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形是邊長(zhǎng)為的正方形,的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且二面角為直二面角,連結(jié).

(1)記平面與平面相較于,在圖中作出,并說(shuō)明畫法;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形所在平面與半圓弧所在平面垂直,上異于,的點(diǎn)

(1)證明:平面平面;

(2)在線段上是否存在點(diǎn),使得平面?說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面,,,的中點(diǎn).

(1)求證:平面;

(2)若點(diǎn)在線段上,且滿足,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位為了響應(yīng)疫情期間有序復(fù)工復(fù)產(chǎn)的號(hào)召,組織從疫區(qū)回來(lái)的甲、乙、丙、丁4名員工進(jìn)行核酸檢測(cè),現(xiàn)采用抽簽法決定檢測(cè)順序,在員工甲不是第一個(gè)檢測(cè),員工乙不是最后一個(gè)檢測(cè)的條件下,員工丙第一個(gè)檢測(cè)的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】新高考改革后,國(guó)家只統(tǒng)一考試數(shù)學(xué)和語(yǔ)文,英語(yǔ)學(xué)科改為參加等級(jí)考試,每年考兩次,分別放在每個(gè)學(xué)年的上、下學(xué)期,物理、化學(xué)、生物、地理、歷史、政治這六科則以該省的省會(huì)考成績(jī)?yōu)闇?zhǔn).考生從中選擇三科成績(jī),參加大學(xué)相關(guān)院系的錄取.

1)若英語(yǔ)等級(jí)考試成績(jī)有一次為優(yōu),即可達(dá)到某211院校的錄取要求.假設(shè)某個(gè)學(xué)生參加每次等級(jí)考試事件是獨(dú)立的,且該生英語(yǔ)等級(jí)考試成績(jī)?yōu)閮?yōu)的概率都是,求該生在高二上學(xué)期的英語(yǔ)等級(jí)考試成績(jī)才為優(yōu)的概率;

2)據(jù)預(yù)測(cè),要想報(bào)考該211院校的相關(guān)院系,省會(huì)考的成績(jī)至少在90分以上,才有可能被該校錄取.假設(shè)該生在省會(huì)考六科的成績(jī),考到90分以上概率都是,設(shè)該生在省會(huì)考時(shí)考到90分以上的科目數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為迎接年北京冬季奧運(yùn)會(huì),普及冬奧知識(shí),某校開展了冰雪答題王冬奧知識(shí)競(jìng)賽活動(dòng).現(xiàn)從參加冬奧知識(shí)競(jìng)賽活動(dòng)的學(xué)生中隨機(jī)抽取了名學(xué)生,將他們的比賽成績(jī)(滿分為分)分為組:,,,,得到如圖所示的頻率分布直方圖.

1)求的值;

2)記表示事件從參加冬奧知識(shí)競(jìng)賽活動(dòng)的學(xué)生中隨機(jī)抽取一名學(xué)生,該學(xué)生的比賽成績(jī)不低于,估計(jì)的概率;

3)在抽取的名學(xué)生中,規(guī)定:比賽成績(jī)不低于分為優(yōu)秀,比賽成績(jī)低于分為非優(yōu)秀.請(qǐng)將下面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為比賽成績(jī)是否優(yōu)秀與性別有關(guān)?

優(yōu)秀

非優(yōu)秀

合計(jì)

男生

女生

合計(jì)

參考公式及數(shù)據(jù):

查看答案和解析>>

同步練習(xí)冊(cè)答案