【題目】若方程僅有一個(gè)解,則實(shí)數(shù)的取值范圍為( )
A. B.
C. D.
【答案】D
【解析】
方程僅有一個(gè)解,轉(zhuǎn)化為研究函數(shù)m(x)=x2﹣8x+6lnx+m的零點(diǎn)問(wèn)題,通過(guò)導(dǎo)數(shù)得到函數(shù)的極值,把函數(shù)的極值同0進(jìn)行比較,得到結(jié)果.
方程僅有一個(gè)解,
則函數(shù)m(x)=x2﹣8x+6lnx+m的圖象與x軸有且只有一個(gè)交點(diǎn).
∵m(x)=x2﹣8x+6lnx+m,(x>0)
∴,
當(dāng)x∈(0,1)時(shí),m(x)>0,m(x)是增函數(shù);
當(dāng)x∈(1,3)時(shí),m(x)<0,m(x)是減函數(shù);
當(dāng)x∈(3,+∞)時(shí),m(x)>0,m(x)是增函數(shù);
當(dāng)x=1,或x=3時(shí),m(x)=0.
∴m(x)極大值=m(1)=m﹣7,m(x)極小值=m(3)=m+6ln3﹣15.
∵當(dāng)x趨近于0時(shí),m(x)趨近于負(fù)無(wú)窮小,當(dāng)x趨近于無(wú)窮大時(shí),m(x)趨近于正無(wú)窮大.
∴要使m(x)的圖象與x軸有一個(gè)交點(diǎn),必須且只須
或即m<7或m>15﹣6ln3.
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圓周上依次排列著共2013個(gè)不同的點(diǎn),每個(gè)點(diǎn)染紅、藍(lán)、綠三色之一.在以任意兩個(gè)同色點(diǎn)為端點(diǎn)的圓弧上,與此兩端點(diǎn)異色的點(diǎn)的個(gè)數(shù)為偶數(shù)的染色方法稱為“好染色”問(wèn):所有好染色方法有多少種?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線,為其焦點(diǎn),拋物線的準(zhǔn)線交軸于點(diǎn)T,直線l交拋物線于A,B兩點(diǎn)。
(1)若O為坐標(biāo)原點(diǎn),直線l過(guò)拋物線焦點(diǎn),且,求△AOB的面積;
(2)當(dāng)直線l與坐標(biāo)軸不垂直時(shí),若點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn)在直線AT上,證明直線l過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),在一個(gè)周期內(nèi)的圖象如下圖所示.
(1)求函數(shù)的解析式;
(2)設(shè),且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍和這兩個(gè)根的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列中,,公差,若 ,,則數(shù)列的前項(xiàng)和的最大值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)在中,角A,B,C所對(duì)的邊分別是a,b,c,證明余弦定理:;
(2)長(zhǎng)江某地南北岸平行,如圖所示,江面寬度,一艘游船從南岸碼頭A出發(fā)航行到北岸,假設(shè)游船在靜水中的航行速度,水流速度,設(shè)和的夾角為θ(),北岸的點(diǎn)在點(diǎn)A的正北方向.
①當(dāng)多大時(shí),游船能到達(dá)處,需要航行多少時(shí)間?
②當(dāng)時(shí),判斷游船航行到達(dá)北岸的位置在的左側(cè)還是右側(cè),并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線的一個(gè)最高點(diǎn)為,與點(diǎn)相鄰一個(gè)最低點(diǎn)為,直線與軸的交點(diǎn)為.
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)增區(qū)間;
(3)若時(shí),函數(shù)恰有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓E:的離心率為,點(diǎn)A(2,1)是橢圓E上的點(diǎn).
(1)求橢圓E的方程;
(2)過(guò)點(diǎn)A作兩條互相垂直的直線l1,l2分別與橢圓E交于B,C兩點(diǎn),己知△ABC的面積為,求直線BC的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)O是銳角△ABC的外心,a,b,c分別為內(nèi)角A、B、C的對(duì)邊,A= ,且,則λ的值為( 。
A. B. ﹣ C. D. ﹣
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com