已知F是橢圓5x2+9y2=45的右焦點,P為該橢圓上的動點,A(2,1)是一定點.
(1)求|PA|+
3
2
|PF|
的最小值,并求相應(yīng)點P的坐標;
(2)求|PA|+|PF|的最大值與最小值;
(3)過點F作傾斜角為60°的直線交橢圓于M、N兩點,求|MN|;
(4)求過點A且以A為中點的弦所在的直線方程.
(1)由題意可得:e=
2
3

所以 |PA|+
3
2
|PF|
=|PA|+
1
e
|PF|
,
∴根據(jù)橢圓的第二定義:過A作右準線的垂線,交與B點,則|PA|+
3
2
|PF2|
的最小值為|AB|,
∵|AB|=
5
2

∴,|PA|+
3
2
|PF|
的最小值
5
2
,并且P(
6
5
5
,1
).
(2)根據(jù)橢圓的第一定義:|PA|+|PF1|=2a+|PA|-|PF2|
如圖所示:因為||PA|-|PF2||≤|AF2|=1⇒-1≤|PA|-|PF2|≤1,
所以5<6+|PA|-|PF2|<7,即5<|PA|+|PF1|<7,
所以PA|+|PF|的最大值與最小值分別為5,7.
(3)由題意可得:直線方程為
3
x-y-2
3
=0
,
聯(lián)立直線與橢圓的方程可得:32x2-108x+63=0,
所以x1+x2=
27
8
,x1•x2=
63
32
,
由弦長公式可得:|MN|=
1+k2
(x1+x2)2-4x1x2
=
15
4

(4)由題意得,斜率存在,設(shè)為 k,則直線l的方程為 y-1=k(x-2),
代入橢圓的方程化簡得:(5+9k2)x2+18k(1-2k)x+9(1-2k)2-45=0,
因為A為弦的中點,
所以x1+x2=4,即
18k(2k-1)
5+9k2
=4,解得k=-
10
9
,
所以以A為中點的弦所在的直線方程為10x+9y-29=0.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0),A、B是橢圓上的兩點,線段AB的垂直平分線與x軸相交于點P(x0,0).證明-
a2-b2
a
x0
a2-b2
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知P為橢圓
x2
16
+
y2
12
=1
上動點,F(xiàn)為橢圓的右焦點,點A的坐標為(3,1),則|PA|+2|PF|的最小值為(  )
A.10+
2
B.10-
2
C.5D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,橢圓的中心在原點,焦點F1、F2在x軸上,A、B是橢圓的頂點,P是橢圓上一點,且PF1⊥x軸,PF2AB,則此橢圓的離心率是( 。
A.
1
2
B.
5
5
C.
1
3
D.
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,F(xiàn)1、F2分別是橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點,A是橢圓C的頂點,B是直線AF2與橢圓C的另一個交點,∠F1AF2=60°.
(Ⅰ)求橢圓C的離心率;
(Ⅱ)已知△AF1B的面積為40
3
,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點且垂直于x軸的直線與橢圓交于M、N兩點,以MN為直徑的圓恰好過左焦點,則橢圓的離心率等于______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過橢圓左焦點F且傾斜角為60°的直線交橢圓于A,B兩點,若|FA|=
3
2
|FB|,則橢圓的離心率等于(  )
A.
2
3
B.
2
5
C.
1
2
D.
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左焦點為F,C與過原點的直線相交于A,B兩點,連接了AF,BF,若|AB|=10,|BF|=8,cos∠ABF=
4
5
,則C的離心率為( 。
A.
3
5
B.
5
7
C.
4
5
D.
6
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線
x2
16
+
y2
9
=1
的長軸長為( 。
A.8B.4C.6D.3

查看答案和解析>>

同步練習(xí)冊答案