已知數(shù)列的各項均為正數(shù),其前項和為,且,,數(shù)列是首項和公比均為的等比數(shù)列.
(1)求證數(shù)列是等差數(shù)列;
(2)若,求數(shù)列的前項和.

(1)證明過程見試題解析(2)

解析試題分析:(1)由題知可化為易證數(shù)列是等差數(shù)列;(2)由是等差數(shù)列,求出通項公式,進而求出,又據(jù)題意易求得,知利用分組求和與錯位相減法可求得前n項和.
試題解析:解:(1)由,得,又的各項均為正數(shù),所以,,
,∴,∴,
所以數(shù)列是等差數(shù)列;
(2)∵,∴,
,
,先求數(shù)列的前項和,

,

,所以,∴。
考點:等差,等比數(shù)列的判定,分組求和與錯位相減求和.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列為等差數(shù)列,且,,數(shù)列的前項和為
(1)求數(shù)列,的通項公式; 
(2)若,求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前n項和為,
(1)證明:數(shù)列是等差數(shù)列,并求;
(2)設(shè),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列的首項,公差,且、、分別是等比數(shù)列、.
(1)求數(shù)列的通項公式;
(2)設(shè)數(shù)列對任意正整數(shù)均有成立,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)等差數(shù)列的前n項和為,且,
(1).求數(shù)列的通項公式;
(2).若成等比數(shù)列,求正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列是首項為,公比的等比數(shù)列,設(shè).

(1)求證數(shù)列的前n項和
(2)若對一切正整數(shù)n恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知為等差數(shù)列,且.
(1)求數(shù)列的通項公式;
(2)記的前項和為,若成等比數(shù)列,求正整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項均為正數(shù)的等比數(shù)列{an}的公比為q,且0<q<.
(1)在數(shù)列{an}中是否存在三項,使其成等差數(shù)列?說明理由;
(2)若a1=1,且對任意正整數(shù)k,ak-(ak+1+ak+2)仍是該數(shù)列中的某一項.
(ⅰ)求公比q;
(ⅱ)若bn=-logan+1(+1),Sn=b1+b2+…+bn,Tr=S1+S2+…+Sn,試用S2011表示T2011.

查看答案和解析>>

同步練習(xí)冊答案