已知,
(1)討論的單調(diào)區(qū)間;
(2)若對任意的,且,有,求實數(shù)的取值范圍.

(1)當;在上是單調(diào)增的;
,在,增,在上減
,在減,
(2)

解析試題分析:(1)根據(jù)題意,由于,那么可知
;在上是單調(diào)增的;
,在增,在上減
,在減,
(2)根據(jù)題意,要使得對任意的,且,有,那么可知上減,恒成立,則恒成立,在額克制參數(shù)a的范圍是
考點:導(dǎo)數(shù)的運用
點評:主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運用,屬于基礎(chǔ)題。體現(xiàn)了分類討論思想的運用。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=(m為常數(shù)0<m<1),且數(shù)列{f()}是首項為2,公差為2的等差數(shù)列.
(1)f(),當m=時,求數(shù)列{}的前n項和;
(2)設(shè)·,如果{}中的每一項恒小于它后面的項,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,函數(shù)
(1)若函數(shù)在區(qū)間內(nèi)是減函數(shù),求實數(shù)的取值范圍;
(2)求函數(shù)在區(qū)間上的最小值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)函數(shù)f(x)="|2x-1|+|2x-3|" , x∈R.
(Ⅰ)解不等式f(x)≤5;
(Ⅱ)若的定義域為R,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知:,當時,;
時,
(1)求的解析式
(2)c為何值時,的解集為R.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)函數(shù)
(Ⅰ)當時,求函數(shù)的極值;
(Ⅱ)當時,討論函數(shù)的單調(diào)性.
(Ⅲ)若對任意及任意,恒有 成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)。
(1)若不等式的解集為,求實數(shù)的值;
(2)在(1)的條件下,若存在實數(shù)n使成立,求實數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)上的增函數(shù),
(Ⅰ)若,求證:
(Ⅱ)判斷(Ⅰ)中命題的逆命題是否成立,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)函數(shù)
(1)當a=l時,求函數(shù)的極值;
(2)當a2時,討論函數(shù)的單調(diào)性;
(3)若對任意a∈(2,3)及任意x1,x2∈[1,2],恒有成立,求
實數(shù)m的取值范圍。

查看答案和解析>>

同步練習冊答案