【題目】給定橢圓,稱圓為橢圓的“伴隨圓”.已知點(diǎn)是橢圓上的點(diǎn)
(1)若過點(diǎn)的直線與橢圓有且只有一個公共點(diǎn),求被橢圓的伴隨圓所截得的弦長:
(2)是橢圓上的兩點(diǎn),設(shè)是直線的斜率,且滿足,試問:直線是否過定點(diǎn),如果過定點(diǎn),求出定點(diǎn)坐標(biāo),如果不過定點(diǎn),試說明理由。
【答案】(1) (2)過原點(diǎn)
【解析】試題分析:(1)分析直線的斜率是否存在,若不存在不符合題意,當(dāng)存在時設(shè)直線,根據(jù)直線與圓的關(guān)系中弦心距,半徑,半弦長構(gòu)成的直角三角形求解即可;(2)設(shè)直線的方程分別為,設(shè)點(diǎn),聯(lián)立得得同理,計算,同理因為,可得,從而可證.
試題解析:
(1)因為點(diǎn)是橢圓上的點(diǎn).
即橢圓
伴隨圓得同理,計算
當(dāng)直線的斜率不存在時:顯然不滿足與橢圓有且只有一個公共點(diǎn)
當(dāng)直接的斜率存在時:設(shè)直線與橢圓聯(lián)立得
由直線與橢圓有且只有一個公共點(diǎn)得
解得,由對稱性取直線即
圓心到直線的距離為
直線被橢圓的伴隨圓所截得的弦長
(2)設(shè)直線的方程分別為
設(shè)點(diǎn)
聯(lián)立得
則得同理
斜率
同理因為
所以 三點(diǎn)共線
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域為{x|x∈R,且x≠0},對定義域內(nèi)的任意x1、x2,都有f(x1·x2)=f(x1)+f(x2),且當(dāng)x>1時,f(x)>0.
(1)求證:f(x)是偶函數(shù);
(2)求證:f(x)在(0,+∞)上是增函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (其中α為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=4sinθ.
(1)若A,B為曲線C1 , C2的公共點(diǎn),求直線AB的斜率;
(2)若A,B分別為曲線C1 , C2上的動點(diǎn),當(dāng)|AB|取最大值時,求△AOB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐中,垂直于正方形所在的平面,在這個四棱錐的所有表面及面、面中,一定互相垂直的平面有_________對.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等比數(shù)列{an}的各項均為正數(shù),且2a3是a2與a6的等比中項,2a1+3a2=16.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=log2a1+log2a2+…+log2an , 求數(shù)列{ }的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足an= ,若從{an}中提取一個公比為q的等比數(shù)列{ },其中k1=1,且k1<k2<…<kn , kn∈N* , 則滿足條件的最小q的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=a(x﹣lnx)+ ﹣ ,a∈R.
(1)討論f(x)的單調(diào)性;
(2)當(dāng)a= 時,證明:f(x)>f′(x)+ 對于任意的x∈[1,2]成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代儒家要求學(xué)生掌握六種基本才藝:禮、樂、射、御、書、數(shù),簡稱“六藝”,某中學(xué)為弘揚(yáng)“六藝”的傳統(tǒng)文化,分別進(jìn)行了主題為“禮、樂、射、御、書、數(shù)”六場傳統(tǒng)文化知識的競賽,現(xiàn)有甲、乙、丙三位選手進(jìn)入了前三名的最后角逐、規(guī)定:每場知識競賽前三名的得分都分別為(,且);選手最后得分為各場得分之和,在六場比賽后,已知甲最后得分為26分,乙和丙最后得分都為11分,且乙在其中一場比賽中獲得第一名,則下列推理正確的是( )
A. 每場比賽第一名得分為4 B. 甲可能有一場比賽獲得第二名
C. 乙有四場比賽獲得第三名 D. 丙可能有一場比賽獲得第一名
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正三角形ABC邊長為2,將它沿高AD翻折,使點(diǎn)B與點(diǎn)C間的距離為 ,此時四面體ABCD的外接球的表面積為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com