【題目】如圖,在四棱錐P-ABCD中,平面PAD 平面ABCD,PA PD ,PA=PD,AB AD,AB=1,AD=2,AC=CD= ,
(1)求證:PD 平面PAB;
(2)求直線PB與平面PCD所成角的正弦值;
(3)在棱PA上是否存在點(diǎn)M,使得BMll平面PCD?若存在,求 的值;若不存在,說明理由。

【答案】
(1)

證明:∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,

且AB⊥AD,AB平面ABCD,

∴AB⊥平面PAD,

∵PD平面PAD,

∴AB⊥PD,

又PD⊥PA,且PA∩AB=A,

∴PD⊥平面PAB;


(2)

解:如圖:

中點(diǎn)為 ,連結(jié) ,

為原點(diǎn),如圖建系

易知P(0,0,1),B(1,1,0),D(0,﹣1,0),C(2,0,0),

, ,

設(shè) 為面 的法向量,令

,則 與面 夾角


(3)

解:假設(shè)存在 點(diǎn)使得

設(shè) ,

由(2)知 , , ,

, 的法向量

∴綜上,存在 點(diǎn),即當(dāng) 時(shí), 點(diǎn)即為所求


【解析】(1)由已知結(jié)合面面垂直的性質(zhì)可得AB⊥平面PAD,進(jìn)一步得到AB⊥PD,再由PD⊥PA,由線面垂直的判定得到PD⊥平面PAB;
(2)取AD中點(diǎn)為O,連接CO,PO,由已知可得CO⊥AD,PO⊥AD.以O(shè)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,求得P(0,0,1),B(1,1,0),D(0,﹣1,0),C(2,0,0),進(jìn)一步求出向量 的坐標(biāo),再求出平面PCD的法向量 ,設(shè)PB與平面PCD的夾角為θ,由 求得直線PB與平面PCD所成角的正弦值;
(3)假設(shè)存在M點(diǎn)使得BM∥平面PCD,設(shè) ,M(0,y1 , z1),由 可得M(0,1﹣λ,λ), ,由BM∥平面PCD,可得 ,由此列式求得當(dāng) 時(shí),M點(diǎn)即為所求.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用空間中直線與平面之間的位置關(guān)系的相關(guān)知識可以得到問題的答案,需要掌握直線在平面內(nèi)—有無數(shù)個(gè)公共點(diǎn);直線與平面相交—有且只有一個(gè)公共點(diǎn);直線在平面平行—沒有公共點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=3tan.

(1)求函數(shù)的最小正周期;

(2)求函數(shù)的定義域;

(3)說明此函數(shù)的圖象是由y=tan x的圖象經(jīng)過怎樣的變換得到的?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在△ABC中,角A,B,C的對邊分別是a,b,c,且有.

(1) 求C;

(2) 若c=3,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從甲、乙兩名學(xué)生中選拔一人參加射箭比賽,為此需要對他們的射箭水平進(jìn)行測試.現(xiàn)這兩名學(xué)生在相同條件下各射箭10次,命中的環(huán)數(shù)如下:

8

9

7

9

7

6

10

10

8

6

10

9

8

6

8

7

9

7

8

8

(1)計(jì)算甲、乙兩人射箭命中環(huán)數(shù)的平均數(shù)和標(biāo)準(zhǔn)差;

(2)比較兩個(gè)人的成績,然后決定選擇哪名學(xué)生參加射箭比賽.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求以圓C1x2y212x2y130和圓C2x2y212x16y250的公共弦為直徑的圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: (a>b>0)的離心率為 ,A(a,0),B(0,b),O(0,0),△OAB的面積為1.
(1)求橢圓C的方程;
(2)設(shè)P的橢圓C上一點(diǎn),直線PA與Y軸交于點(diǎn)M,直線PB與x軸交于點(diǎn)N。求證:lANl lBMl為定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)在中,角所對的邊分別為,已知,

1)求的值;

2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 ,直線與拋物線交于, 兩點(diǎn).點(diǎn) 為拋物線上一動(dòng)點(diǎn),直線, 分別與軸交于, .

(I)若的面積為,求點(diǎn)的坐標(biāo);

(II)當(dāng)直線時(shí),求線段的長;

(III)若面積相等,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的長軸長為4,焦距為2

(1)求橢圓C的方程;
(2)過動(dòng)點(diǎn)M(0,m)(m>0)的直線交x軸于點(diǎn)N,交C于點(diǎn)A,P(P在第一象限),且M是線段PN的中點(diǎn),過點(diǎn)P作x軸的垂線交C于另一點(diǎn)Q,延長QM交C于點(diǎn)B.
①設(shè)直線PM,QM的斜率分別為k,k′,證明 為定值;
②求直線AB的斜率的最小值.

查看答案和解析>>

同步練習(xí)冊答案