【題目】已知拋物線的經(jīng)過點

(1)求拋物線的方程;

(2)過拋物線焦點F的直線l交拋物線于A、B兩點,若|AB|=8,求直線l的方程.

【答案】(1);(2)

【解析】

1)利用點坐標,求得的值,進而求得拋物線方程.

2)由(1)求得點的坐標.軸垂直時,求得;當直線軸不垂直時,設(shè)出直線的方程,與拋物線方程聯(lián)立,寫出韋達定理,根據(jù)拋物線的弦長公式列方程,解方程求得直線的斜率,從而求得直線的方程.

(1)把點帶入方程,

所以,拋物線方程為

(2)拋物線方程得焦點坐標為F10 ),

若直線lx軸垂直,易得A1,2 ),B1,-2 ),此時|AB|≠8.

若直線l不與x軸垂直,設(shè)直線l的斜率為k,

則直線l的方程為

y整理得:,

,解得,即

∴直線的方程為,即

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知圓臺側(cè)面的母線長為,母線與軸的夾角為,一個底面的半徑是另一個底面半徑的倍.

1)求圓臺兩底面的半徑;

2)如圖,點為下底面圓周上的點,且,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,CM,CN為某公園景觀湖胖的兩條木棧道,∠MCN=120°,現(xiàn)擬在兩條木棧道的A,B處設(shè)置觀景臺,記BC=a,AC=bAB=c(單位:百米)

1)若a,bc成等差數(shù)列,且公差為4,求b的值;

2)已知AB=12,記∠ABC,試用θ表示觀景路線A-C-B的長,并求觀景路線A-C-B長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,從參加環(huán)保知識競賽的1200名學生中抽出名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下:觀察圖形,回答下列問題:

1這一組的頻數(shù)、頻率分別是多少?

2)估計這次環(huán)保知識競賽的及格率。(分及以上為及格)

3)若準備取成績最好的300名發(fā)獎,則獲獎的最低分數(shù)約為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱錐中,,且,,,,則該三棱錐的外接球的表面積為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來,隨著我國汽車消費水平的提高,二手車流通行業(yè)得到迅猛發(fā)展.某汽車交易市場對2017年成交的二手車交易前的使用時間(以下簡稱“使用時間”)進行統(tǒng)計,得到頻率分布直方圖如圖1.

圖1 圖2

(1)記“在年成交的二手車中隨機選取一輛,該車的使用年限在”為事件,試估計的概率;

(2)根據(jù)該汽車交易市場的歷史資料,得到散點圖如圖2,其中(單位:年)表示二手車的使用時間,(單位:萬元)表示相應(yīng)的二手車的平均交易價格.由散點圖看出,可采用作為二手車平均交易價格關(guān)于其使用年限的回歸方程,相關(guān)數(shù)據(jù)如下表(表中):

5.5

8.7

1.9

301.4

79.75

385

①根據(jù)回歸方程類型及表中數(shù)據(jù),建立關(guān)于的回歸方程;

②該汽車交易市場對使用8年以內(nèi)(含8年)的二手車收取成交價格的傭金,對使用時間8年以上(不含8年)的二手車收取成交價格的傭金.在圖1對使用時間的分組中,以各組的區(qū)間中點值代表該組的各個值.若以2017年的數(shù)據(jù)作為決策依據(jù),計算該汽車交易市場對成交的每輛車收取的平均傭金.

附注:①對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為

②參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在著名的漢諾塔問題中,有三根高度相同的柱子和一些大小及顏色各不相同的圓盤,三根柱子分別為起始柱、輔助柱及目標柱.已知起始柱上套有個圓盤,較大的圓盤都在較小的圓盤下面.現(xiàn)把圓盤從起始柱全部移到目標柱上,規(guī)則如下:每次只能移動一個圓盤,且每次移動后,每根柱上較大的圓盤不能放在較小的圓盤上面,規(guī)定一個圓盤從任一根柱上移動到另一根柱上為一次移動.若將個圓盤從起始柱移動到目標柱上最少需要移動的次數(shù)記為,則( )

A. 33B. 31C. 17D. 15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,點為圓上一動點,過點分別作軸,軸的垂線,垂足分別為,,連接延長至點,使得,點的軌跡記為曲線.

(1)求曲線的方程;

(2)若點分別位于軸與軸的正半軸上,直線與曲線相交于兩點,試問在曲線上是否存在點,使得四邊形為平行四邊形,若存在,求出直線方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,F是橢圓的左焦點,橢圓的離心率為B為橢圓的左頂點和上頂點,點Cx軸上,,的外接圓M恰好與直線相切.

1求橢圓的方程;

2過點C的直線與已知橢圓交于P,Q兩點,且,求直線的方程.

查看答案和解析>>

同步練習冊答案