【題目】以平面直角坐標(biāo)系中的坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半抽為極軸,建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程是,直線(xiàn)的參數(shù)方程是為參數(shù)).

1)求曲線(xiàn)的直角坐標(biāo)方程;

2)若直線(xiàn)與曲線(xiàn)交于、兩點(diǎn),且,求直線(xiàn)的傾斜角.

【答案】1;(2.

【解析】

1)在曲線(xiàn)的極坐標(biāo)的兩邊同時(shí)乘以,再由,可將曲線(xiàn)的極坐標(biāo)方程化為直角坐標(biāo)方程;

2)將直線(xiàn)的參數(shù)方程代入曲線(xiàn)的直角坐標(biāo)方程,得到關(guān)于的一元二次方程,并列出韋達(dá)定理,借助弦長(zhǎng)公式即可計(jì)算出的值.

1)在曲線(xiàn)的極坐標(biāo)的兩邊同時(shí)乘以,得,

所以,曲線(xiàn)的直角坐標(biāo)方程為,即;

2)設(shè)點(diǎn)在直線(xiàn)上對(duì)應(yīng)的參數(shù)分別為、,

將直線(xiàn)的參數(shù)方程代入曲線(xiàn)的直角坐標(biāo)方程,得

,,

由韋達(dá)定理得,

,得,

,因此,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)討論fx)的單調(diào)性;

2)設(shè)a4,且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),函數(shù)的圖象經(jīng)過(guò),其導(dǎo)函數(shù)的圖象是斜率為,過(guò)定點(diǎn)的一條直線(xiàn).

1)討論的單調(diào)性;

2)當(dāng)時(shí),不等式恒成立,求整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)討論函數(shù)的單調(diào)性;

2)當(dāng)時(shí),證明:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,順次是橢圓的右頂點(diǎn)、上頂點(diǎn)和下頂點(diǎn),橢圓的離心率,且.

1)求橢圓的方程;

2)若斜率的直線(xiàn)過(guò)點(diǎn),直線(xiàn)與橢圓交于,兩點(diǎn),試判斷:以為直徑的圓是否經(jīng)過(guò)點(diǎn),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 。

(1)當(dāng)時(shí),討論的單調(diào)性;

(2)若在點(diǎn)處的切線(xiàn)方程為,若對(duì)任意的

恒有,求的取值范圍(是自然對(duì)數(shù)的底數(shù))。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宜傳費(fèi),需了解年宣傳費(fèi)對(duì)年銷(xiāo)售量(單位:t)的影響.該公司對(duì)近5年的年宣傳費(fèi)和年銷(xiāo)售量數(shù)據(jù)進(jìn)行了研究,發(fā)現(xiàn)年宣傳費(fèi)x(萬(wàn)元)和年銷(xiāo)售量y(單位:t)具有線(xiàn)性相關(guān)關(guān)系,并對(duì)數(shù)據(jù)作了初步處理,得到下面的一些統(tǒng)計(jì)量的值.

x(萬(wàn)元)

2

4

5

3

6

y(單位:t

2.5

4

4.5

3

6

1)根據(jù)表中數(shù)據(jù)建立年銷(xiāo)售量y關(guān)于年宣傳費(fèi)x的回歸方程.

2)已知這種產(chǎn)品的年利潤(rùn)(萬(wàn)元)與xy的關(guān)系為根據(jù)(1)中的結(jié)果回答下列問(wèn)題:

①當(dāng)年宣傳費(fèi)為10萬(wàn)元時(shí),預(yù)測(cè)該產(chǎn)品的年銷(xiāo)售量及年利潤(rùn);

②估計(jì)該產(chǎn)品的年利潤(rùn)與年宣傳費(fèi)的比值的最大值.

附:回歸方程中的斜率和截距的最小二乘估計(jì)公式分別為.

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】交通擁堵指數(shù)是綜合反映道路網(wǎng)暢通或擁堵的概念,記交通擁堵指數(shù)為,其范圍為,分別有五個(gè)級(jí)別:暢通;基本暢通;輕度擁堵;中度擁堵;嚴(yán)重?fù)矶?/span>.晚高峰時(shí)段(),從某市交通指揮中心選取了市區(qū)20個(gè)交通路段,依據(jù)其交通擁堵指數(shù)數(shù)據(jù)繪制的直方圖如圖所示.

(Ⅰ)用分層抽樣的方法從交通指數(shù)在,的路段中共抽取個(gè)路段,求依次抽取的三個(gè)級(jí)別路段的個(gè)數(shù);

(Ⅱ)從(Ⅰ)中抽出的個(gè)路段中任取個(gè),求至少有個(gè)路段為輕度擁堵的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某省數(shù)學(xué)學(xué)會(huì)為選拔一批學(xué)生代表該省參加全國(guó)高中數(shù)學(xué)聯(lián)賽,在省內(nèi)組織了一次預(yù)選賽,該省各校學(xué)生均可報(bào)名參加.現(xiàn)從所有參賽學(xué)生中隨機(jī)抽取人的成績(jī)進(jìn)行統(tǒng)計(jì),發(fā)現(xiàn)這名學(xué)生中本次預(yù)選賽成績(jī)優(yōu)秀的男、女生人數(shù)之比為,成績(jī)一般的男、女生人數(shù)之比為.已知從這名學(xué)生中隨機(jī)抽取一名學(xué)生,抽到男生的概率是

1)請(qǐng)將下表補(bǔ)充完整,并判斷是否有的把握認(rèn)為在本次預(yù)選賽中學(xué)生的成績(jī)優(yōu)秀與性別有關(guān)?

成績(jī)優(yōu)秀

成績(jī)一般

總計(jì)

男生

女生

總計(jì)

2)以樣本估計(jì)總體,視樣本頻率為相應(yīng)事件發(fā)生的概率,從所有本次預(yù)選賽成績(jī)優(yōu)秀的學(xué)生中隨機(jī)抽取人代表該省參加全國(guó)聯(lián)賽,記抽到的女生人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

參考公式:,其中;

臨界值表供參考:

查看答案和解析>>

同步練習(xí)冊(cè)答案