【題目】某校高三4班有50名學(xué)生進(jìn)行了一場(chǎng)投籃測(cè)試,其中男生30人,女生20人.為了了解其投籃成績(jī),甲、乙兩人分別都對(duì)全班的學(xué)生進(jìn)行編號(hào)(1-50號(hào)),并以不同的方法進(jìn)行數(shù)據(jù)抽樣,其中一人用的是系統(tǒng)抽樣,另一人用的是分層抽樣.若此次投籃測(cè)試的成績(jī)大于或等于80分視為優(yōu)秀,小于80分視為不優(yōu)秀,以下是甲、乙兩人分別抽取的樣本數(shù)據(jù):

甲抽取的樣本數(shù)據(jù)

編號(hào)

2

7

12

17

22

27

32

37

42

47

性別











投籃成 績(jī)

90

60

75

80

83

85

75

80

70

60

乙抽取的樣本數(shù)據(jù)

編號(hào)

1

8

10

20

23

28

33

35

43

48

性別











投籃成 績(jī)

95

85

85

70

70

80

60

65

70

60

)在乙抽取的樣本中任取3人,記投籃優(yōu)秀的學(xué)生人數(shù)為,求的分布列和數(shù)學(xué)期望.

)請(qǐng)你根據(jù)乙抽取的樣本數(shù)據(jù)完成下列2×2列聯(lián)表,判斷是否有95%以上的把握認(rèn)為投籃成績(jī)和性別有關(guān)?


優(yōu)秀

非優(yōu)秀

合計(jì)









合計(jì)



10

)判斷甲、乙各用何種抽樣方法,并根據(jù)()的結(jié)論判斷哪種抽樣方法更優(yōu)?說明理由.

下面的臨界值表供參考:


0.15

0.10

0.05

0.010

0.005

0.001


2.072

2.706

3.841

6.635

7.879

10.828

(參考公式:,其中

【答案】(Ⅰ)分布列見解析,期望為;(2)有95%以上的把握認(rèn)為投籃成績(jī)與性別有關(guān);(Ⅲ)采用分層抽樣方法比系統(tǒng)抽樣方法更優(yōu).

【解析】

(Ⅰ)在乙抽取的10個(gè)樣本中,投籃優(yōu)秀的學(xué)生人數(shù)為4,

的取值為01,2,3,

分布列為:


0

1

2

3






)設(shè)投籃成績(jī)與性別無(wú)關(guān),由乙抽取的樣本數(shù)據(jù),得列聯(lián)表如下:


優(yōu)秀

非優(yōu)秀

合計(jì)


4

2

6


0

4
span>

4

合計(jì)

4

6

10

的觀測(cè)值4.4443.841

所以有95%以上的把握認(rèn)為投籃成績(jī)與性別有關(guān).

)甲用的是系統(tǒng)抽樣,乙用的是分層抽樣.

由()的結(jié)論知,投籃成績(jī)與性別有關(guān),并且從樣本數(shù)據(jù)能看出投籃成績(jī)與性別有明顯差異,因此采用分層抽樣方法比系統(tǒng)抽樣方法更優(yōu).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)(a,);

(1)若,求證:函數(shù)的圖像必過定點(diǎn);

(2)若,證明:在區(qū)間上的最大值;

(3)存在實(shí)數(shù)a,使得當(dāng)時(shí),恒成立,求實(shí)數(shù)b的最大值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解人們對(duì)于國(guó)家新頒布的“生育二胎放開”政策的熱度,現(xiàn)在某市進(jìn)行調(diào)查,隨機(jī)調(diào)查了人,他們年齡的頻數(shù)分布及支持生育二胎人數(shù)如下表:

年齡

頻數(shù)

支持“生二胎”

1)由以上統(tǒng)計(jì)數(shù)據(jù)填下面列聯(lián)表,并問是否有的把握認(rèn)為以歲為分界點(diǎn)對(duì)“生育二胎放開”政策的支持度有差異;

年齡不低于歲的人數(shù)

年齡低于歲的人數(shù)

合計(jì)

支持

不支持

合計(jì)

2)若對(duì)年齡在的被調(diào)查人中隨機(jī)選取兩人進(jìn)行調(diào)查,恰好這兩人都支持“生育二胎放開”的概率是多少?

參考數(shù)據(jù):,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為,為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的坐標(biāo)方程為,若直線與曲線相切.

(1)求曲線的極坐標(biāo)方程;

(2)在曲線上取兩點(diǎn)、于原點(diǎn)構(gòu)成,且滿足,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在位于城市A南偏西相距100海里的B處,一股臺(tái)風(fēng)沿著正東方向襲來(lái),風(fēng)速為120海里/小時(shí),臺(tái)風(fēng)影響的半徑為海里

1)若,求臺(tái)風(fēng)影響城市A持續(xù)的時(shí)間(精確到1分鐘)?

2)若臺(tái)風(fēng)影響城市A持續(xù)的時(shí)間不超過1小時(shí),求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為了引導(dǎo)居民合理用水,居民生活用水實(shí)行二級(jí)階梯式水價(jià)計(jì)量方法,具體如下;第一階梯,每戶居民每月用水量不超過12噸,價(jià)格為4元/噸;第二階梯,每戶居民用水量超過12噸,超過部分的價(jià)格為8元/噸,為了了解全是居民月用水量的分布情況,通過抽樣獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照(全市居民月用水量均不超過16噸)分成8組,制成了如圖1所示的頻率分布直方圖.

(Ⅰ)求頻率分布直方圖中字母的值,并求該組的頻率;

(Ⅱ)通過頻率分布直方圖,估計(jì)該市居民每月的用水量的中位數(shù)的值(保留兩位小數(shù));

(Ⅲ)如圖2是該市居民張某20161~6月份的月用水費(fèi)(元)與月份的散點(diǎn)圖,其擬合的線性回歸方程是若張某20161~7月份水費(fèi)總支出為312元,試估計(jì)張某7月份的用水噸數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)的坐標(biāo)分別為,.三角形的兩條邊所在直線的斜率之積是.

1)求點(diǎn)的軌跡方程;

2)設(shè)直線方程為,直線方程為,直線,點(diǎn)關(guān)于軸對(duì)稱,直線軸相交于點(diǎn).的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】李克強(qiáng)總理在2018年政府工作報(bào)告指出,要加快建設(shè)創(chuàng)新型國(guó)家,把握世界新一輪科技革命和產(chǎn)業(yè)變革大勢(shì),深入實(shí)施創(chuàng)新驅(qū)動(dòng)發(fā)展戰(zhàn)略,不斷增強(qiáng)經(jīng)濟(jì)創(chuàng)新力和競(jìng)爭(zhēng)力.某手機(jī)生產(chǎn)企業(yè)積極響應(yīng)政府號(hào)召,大力研發(fā)新產(chǎn)品,爭(zhēng)創(chuàng)世界名牌.為了對(duì)研發(fā)的一批最新款手機(jī)進(jìn)行合理定價(jià),將該款手機(jī)按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù),如表所示:

單價(jià)(千元)

銷量(百件)

已知.

(1)若變量具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(百件)關(guān)于試銷單價(jià)(千元)的線性回歸方程;

(2)用(1)中所求的線性回歸方程得到與對(duì)應(yīng)的產(chǎn)品銷量的估計(jì)值.當(dāng)銷售數(shù)據(jù)對(duì)應(yīng)的殘差的絕對(duì)值時(shí),則將銷售數(shù)據(jù)稱為一個(gè)“好數(shù)據(jù)”.現(xiàn)從個(gè)銷售數(shù)據(jù)中任取個(gè)子,求“好數(shù)據(jù)”個(gè)數(shù)的分布列和數(shù)學(xué)期望.

(參考公式:線性回歸方程中的估計(jì)值分別為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中e為自然對(duì)數(shù)的底).

1)若上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;

2)若,證明:存在唯一的極小值點(diǎn),且.

查看答案和解析>>

同步練習(xí)冊(cè)答案