(本題滿分12分)設(shè)橢圓
:
的左、右焦點分別為
,上頂點為
,過點
與
垂直的直線交
軸負半軸于點
,且
.
(1)求橢圓
的離心率; (2)若過
、
、
三點的圓恰好與直線
:
相切,
求橢圓
的方程;
(1)
;(2)
。
試題分析:(1)設(shè)Q(x
0,0),由
(c,0),A(0,b)
知
,
由于
即
為
中點.
故
,
故橢圓的離心率
……6分
(2)由⑴知
得
于是
(
,0) Q
,
△AQF的外接圓圓心為F
1(-
,0),半徑r=
|FQ|=
所以
,解得
=2,∴c =1,b=
,
所求橢圓方程為
……12分
點評:在求橢圓的離心率時,判斷出
為
的中點是解題的關(guān)鍵。屬于基礎(chǔ)題型。在計算時一定要認真、仔細,避免出現(xiàn)計算錯誤。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
(a>b>0)的焦距為4,且與橢圓
有相同的離心率,斜率為k的直線l經(jīng)過點M(0,1),與橢圓C交于不同兩點A、B.
(1)求橢圓C的標準方程;
(2)當橢圓C的右焦點F在以AB為直徑的圓內(nèi)時,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓C:
(a>b>0),則稱以原點為圓心,r=
的圓為橢圓C的“知己圓”。
(Ⅰ)若橢圓過點(0,1),離心率e=
;求橢圓C方程及其“知己圓”的方程;
(Ⅱ)在(Ⅰ)的前提下,若過點(0,m)且斜率為1的直線截其“知己圓”的弦長為2,求m的值;
(Ⅲ)討論橢圓C及其“知己圓”的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,已知
是長軸為
的橢圓上三點,點
是長軸的一個頂點,
過橢圓中心
,且
.
(1)建立適當?shù)淖鴺讼担髾E圓方程;
(2)如果橢圓上兩點
使直線
與
軸圍成底邊在
軸上的等腰三角形,是否總存在實數(shù)
使
?請給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
過橢圓
的右焦點F
2作傾斜角為
弦AB,則|AB︳為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)
已知橢圓
,其左準線為
,右準線為
,拋物線
以坐標原點
為頂點,
為準線,
交
于
兩點.
(1)求拋物線
的標準方程;
(2)求線段
的長度.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的一個焦點是
,且截直線
所得弦長為
,求該橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在平面直角坐標系
中,橢圓
為
(1)若一直線與橢圓
交于兩不同點
,且線段
恰以點
為中點,求直線
的方程;
(2)若過點
的直線
(非
軸)與橢圓
相交于兩個不同點
試問在
軸上是否存在定點
,使
恒為定值
?若存在,求出點
的坐標及實數(shù)
的值;若不存在,請說明理由.
查看答案和解析>>