【題目】對(duì)任意的實(shí)數(shù)x,不等式恒成立,則實(shí)數(shù)m的取值范圍是()
A.
B.
C.
D.
【答案】A
【解析】當(dāng)m=0時(shí),mx2-mx-1=-1<0,不等式成立;
設(shè)y=mx2-mx-1,當(dāng)m≠0時(shí)函數(shù)y為二次函數(shù),y要恒小于0,拋物線開口向下且與x軸沒有交點(diǎn),即要m<0且△<0
得到:m<0,△=m2+4m<0解得-4<m<0.
綜上得到-4<m≤0.故選A.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解解一元二次不等式的相關(guān)知識(shí),掌握求一元二次不等式解集的步驟:一化:化二次項(xiàng)前的系數(shù)為正數(shù);二判:判斷對(duì)應(yīng)方程的根;三求:求對(duì)應(yīng)方程的根;四畫:畫出對(duì)應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當(dāng)二次項(xiàng)系數(shù)為正時(shí),小于取中間,大于取兩邊.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 , : , : .
(1)若 是 的充分條件,求實(shí)數(shù) 的取值范圍;
(2)若 ,“”為真命題,“”為假命題,求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某科研機(jī)構(gòu)研發(fā)了某種高新科技產(chǎn)品,現(xiàn)已進(jìn)入實(shí)驗(yàn)階段.已知實(shí)驗(yàn)的啟動(dòng)資金為10萬(wàn)元,從實(shí)驗(yàn)的第一天起連續(xù)實(shí)驗(yàn),第天的實(shí)驗(yàn)需投入實(shí)驗(yàn)費(fèi)用為元,實(shí)驗(yàn)30天共投入實(shí)驗(yàn)費(fèi)用17700元.
(1)求的值及平均每天耗資最少時(shí)實(shí)驗(yàn)的天數(shù);
(2)現(xiàn)有某知名企業(yè)對(duì)該項(xiàng)實(shí)驗(yàn)進(jìn)行贊助,實(shí)驗(yàn)天共贊助元.為了保證產(chǎn)品質(zhì)量,至少需進(jìn)行50天實(shí)驗(yàn),若要求在平均每天實(shí)際耗資最小時(shí)結(jié)束實(shí)驗(yàn),求的取值范圍.(實(shí)際耗資=啟動(dòng)資金+試驗(yàn)費(fèi)用-贊助費(fèi))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過拋物線C:y2=2px(p>0)的焦點(diǎn)F的直線交拋物線于A,B兩點(diǎn),且A,B兩點(diǎn)的縱坐標(biāo)之積為﹣4.
(1)求拋物線C的方程;
(2)已知點(diǎn)D的坐標(biāo)為(4,0),若過D和B兩點(diǎn)的直線交拋物線C的準(zhǔn)線于P點(diǎn),求證:直線AP與x軸交于一定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為圓O的直徑,C在圓O上,CF⊥AB于F,點(diǎn)D為線段CF上任意一點(diǎn),延長(zhǎng)AD交圓O于E,∠AEC=30°.
(1)求證:AF=FO;
(2)若CF= ,求ADAE的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左右頂點(diǎn)分別為,左焦點(diǎn)為,已知橢圓的離心率為,且過點(diǎn).
(1)求橢圓的方程;
(2)若過點(diǎn)的直線與該橢圓交于兩點(diǎn),且線段的中點(diǎn)恰為點(diǎn),且直線的方程;
(3)若經(jīng)過點(diǎn)的直線與橢圓交于兩點(diǎn),記與的面積分別為和,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】提高過江大橋的車輛通行能力可改善整個(gè)城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時(shí))是車流密度x(單位:輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過20輛/千米時(shí),車流速度為60千米/小時(shí),研究表明:當(dāng)20≤x≤200時(shí),車流速度v是車流密度x的一次函數(shù).
(1)當(dāng)0≤x≤200時(shí),求函數(shù)v(x)的表達(dá)式;
(2)當(dāng)車流密度x為多大時(shí),車流量(單位時(shí)間內(nèi)通過橋上某觀測(cè)點(diǎn)的車輛數(shù),單位:輛/小時(shí))f(x)=xv(x)可以達(dá)到最大,并求出最大值.(精確到1輛/小時(shí)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的部分圖象如圖所示,則下列判斷錯(cuò)誤的是( )
A.ω=2
B.
C.函數(shù)f(x)的圖象關(guān)于(﹣ , 0)對(duì)稱
D.函數(shù)f(x)的圖象向右平移個(gè)單位后得到y(tǒng)=Asinωx的圖象
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a∈R,函數(shù)f(x)=log2( +a).
(1)當(dāng)a=5時(shí),解不等式f(x)>0;
(2)若關(guān)于x的方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一個(gè)元素,求a的取值范圍.
(3)設(shè)a>0,若對(duì)任意t∈[ ,1],函數(shù)f(x)在區(qū)間[t,t+1]上的最大值與最小值的差不超過1,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com