精英家教網 > 高中數學 > 題目詳情

(本小題滿分14分)已知函數=,.
(1)求函數在區(qū)間上的值域;
(2)是否存在實數,對任意給定的,在區(qū)間上都存在兩個不同的,使得成立.若存在,求出的取值范圍;若不存在,請說明理由.
(3)給出如下定義:對于函數圖象上任意不同的兩點,如果對于函數圖象上的點(其中總能使得成立,則稱函數具備性質“”,試判斷函數是不是具備性質“”,并說明理由.

(1)值域為 .(2)滿足條件的不存在. (3)函數不具備性質“”.

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)已知函數
(Ⅰ)若函數上為增函數,求正實數的取值范圍;
(Ⅱ)設,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(12分)已知函數,曲線過點P(-1,2),且在點P處的切線恰好與直線x-3y=0垂直。
①求a,b的值;
②求該函數的單調區(qū)間和極值。
③若函數在上是增函數,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題14分)設函數.
(Ⅰ)討論的單調性;
(Ⅱ)已知,若函數的圖象總在直線的下方,求的取值范圍;
(Ⅲ)記為函數的導函數.若,試問:在區(qū)間上是否存在)個正數,使得成立?請證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
設函數
(1)求函數的單調遞增區(qū)間;
(2)若關于的方程在區(qū)間內恰有兩個相異的實根,求實數的取值范圍.  

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分14分)
已知函數
(1)判斷的單調性并證明;
(2)若滿足,試確定的取值范圍。
(3)若函數對任意時,恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分14分)
設函數
⑴當且函數在其定義域上為增函數時,求的取值范圍;
⑵若函數處取得極值,試用表示
⑶在⑵的條件下,討論函數的單調性。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分14分)
已知函數的單調遞增區(qū)間為,
(Ⅰ)求證:;
(Ⅱ)當取最小值時,點是函數圖象上的兩點,若存在使得,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題分12分)                        
定義.
(Ⅰ)求曲線與直線垂直的切線方程;
(Ⅱ)若存在實數使曲線點處的切線斜率為,且,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案