【題目】已知平面直角坐標(biāo)系,以為極點,軸的非負半軸為極軸建立極坐標(biāo)系,曲線的參數(shù)方程為為參數(shù)),點時曲線上兩點,點的極坐標(biāo)分別為,.

1)寫出曲線的普通方程和極坐標(biāo)方程;

2)求的值.

【答案】1,,(2)6

【解析】

1)消去參數(shù),把曲線的參數(shù)方程化為普通方程,再由公式,把曲線的普通方程化為極坐標(biāo)方程;
2)方法1:由兩點的極坐標(biāo),得出,判定為直徑,求出;
方法2:把化為直角坐標(biāo)的點的坐標(biāo),求出兩點間距離

1曲線的參數(shù)方程為,(為參數(shù)),

消去參數(shù),化為普通方程是;

,(為參數(shù)),

曲線的普通方程可化為極坐標(biāo),(為參數(shù)).

2)方法1:由是圓上的兩點,

且知,

為直徑,.

方法2:由兩點化為直角坐標(biāo)中點的坐標(biāo)是:

,,

、兩點間的距離為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電子工廠生產(chǎn)一種電子元件,產(chǎn)品出廠前要檢出所有次品.已知這種電子元件次品率為0.01,且這種電子元件是否為次品相互獨立.現(xiàn)要檢測3000個這種電子元件,檢測的流程是:先將這3000個電子元件分成個數(shù)相等的若干組,設(shè)每組有個電子元件,將每組的個電子元件串聯(lián)起來,成組進行檢測,若檢測通過,則本組全部電子元件為正品,不需要再檢測;若檢測不通過,則本組至少有一個電子元件是次品,再對本組個電子元件逐一檢測.

1)當(dāng)時,估算一組待檢測電子元件中有次品的概率;

2)設(shè)一組電子元件的檢測次數(shù)為,求的數(shù)學(xué)期望;

3)估算當(dāng)為何值時,每個電子元件的檢測次數(shù)最小,并估算此時檢測的總次數(shù)(提示:利用進行估算).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為檢查某工廠所生產(chǎn)的8萬臺電風(fēng)扇的質(zhì)量,抽查了其中20臺的無故障連續(xù)使用時限(單位:小時) 如下:

248 256 232 243 188 268 278 266 289 312

274 296 288 302 295 228 287 217 329 283

分組

頻數(shù)

頻率

頻率/組距

總計

0.05

1)完成頻率分布表,并作出頻率分布直方圖;

2)估計8萬臺電風(fēng)扇中有多少臺無故障連續(xù)使用時限不低于280小時;

3)用組中值(同一組中的數(shù)據(jù)在該組區(qū)間的中點值)估計樣本的平均無故障連續(xù)使用時限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,準(zhǔn)線方程為,直線過定點)且與拋物線交于、兩點,為坐標(biāo)原點.

1)求拋物線的方程;

2是否為定值,若是,求出這個定值;若不是,請說明理由;

3)當(dāng)時,設(shè),記,求的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求的單調(diào)區(qū)間與極值;

2)當(dāng)函數(shù)有兩個極值點時,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若函數(shù)有四個零點,則的取值范圍是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),為常數(shù),且.

1)證明函數(shù)的圖象關(guān)于直線對稱;

2)當(dāng)時,討論方程解的個數(shù);

3)若滿足,但,則稱為函數(shù)的二階周期點,則是否有兩個二階周期點,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個焦點分別為,,過點的直線與橢圓相交于點A,B兩點,且

1)若,求橢圓的方程;

2)直線AB的斜率;

3)設(shè)點C與點A關(guān)于坐標(biāo)原點對稱,直線上有一點的外接圓上,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的左右頂點分別為.直線和兩條漸近線交于點,點在第一象限且,是雙曲線上的任意一點.

(1)求雙曲線的標(biāo)準(zhǔn)方程;

(2)是否存在點P使得為直角三角形?若存在,求出點P的個數(shù);

(3)直線與直線分別交于點,證明:以為直徑的圓必過定點.

查看答案和解析>>

同步練習(xí)冊答案