【題目】汽車(chē)在行駛中,由于慣性,剎車(chē)后還要繼續(xù)向前滑行一段距離才能停止,一般稱(chēng)這段距離為剎車(chē)距離”.剎車(chē)距離是分析交通事故的一個(gè)重要依據(jù).在一個(gè)限速為的彎道上,甲、乙兩輛汽車(chē)相向而行,突然發(fā)現(xiàn)有危險(xiǎn)情況,同時(shí)緊急剎車(chē),但還是發(fā)生了交通事故.事后現(xiàn)場(chǎng)勘查,測(cè)得甲車(chē)的剎車(chē)距離略超過(guò),乙車(chē)的剎車(chē)距離略超過(guò).已知甲、乙兩種車(chē)型的剎車(chē)距離與車(chē)速之間的關(guān)系分別為:,.根據(jù)以上信息判斷:在這起交通事故中,應(yīng)負(fù)主要責(zé)任的可能是_______________車(chē),理由是__________________________.

【答案】 乙車(chē)超過(guò)了限定速度

【解析】

根據(jù)所給函數(shù),算出兩車(chē)的車(chē)速即可得到答案.

解:對(duì)甲車(chē):令,解得(負(fù)值舍去),甲車(chē)車(chē)速在限速以?xún)?nèi);

對(duì)乙車(chē):令,解得(負(fù)值舍去),乙車(chē)車(chē)速超過(guò)限速,

故答案為:乙;乙車(chē)超過(guò)了限定速度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

(1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線(xiàn)方程;

(2)若函數(shù)的圖象與軸交于兩點(diǎn),且,求的取值范圍;

(3)在(2)的條件下,證明:為函數(shù)的導(dǎo)函數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和,是常數(shù)且.

1)證明:是等差數(shù)列;

2)證明:以為坐標(biāo)的點(diǎn)落在同一直線(xiàn)上,并求直線(xiàn)方程;

3)設(shè),是以為圓心,為半徑的圓,求使得點(diǎn)都落在圓外時(shí),的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某運(yùn)動(dòng)員每次投籃命中的概率低于,現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率:先由計(jì)算器產(chǎn)生09之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中,5,6,7,89,0表示不命中;再以每三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

據(jù)此估計(jì),該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率為(

A.0.35B.0.25C.0.20D.0.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),為常數(shù))在內(nèi)有兩個(gè)極值點(diǎn)

(1)求實(shí)數(shù)的取值范圍;

(2)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)南宋數(shù)學(xué)家楊輝在所著的《詳解九章算法》一書(shū)中用如圖所示的三角形解釋二項(xiàng)展開(kāi)式的系數(shù)規(guī)律,去掉所有為1的項(xiàng),依次構(gòu)成2,3,34,64,5,1010,5,6…,則此數(shù)列的前50項(xiàng)和為(

A.2025B.3052C.3053D.3049

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)A,BR中兩個(gè)子集,對(duì)于xR,定義:

①若AB.則對(duì)任意xR,m1-n=______;

②若對(duì)任意xR,m+n=1,則A,B的關(guān)系為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司甲、乙兩個(gè)班組分別試生產(chǎn)同一種規(guī)格的產(chǎn)品,已知此種產(chǎn)品的質(zhì)量指標(biāo)檢測(cè)分?jǐn)?shù)不小于70時(shí),該產(chǎn)品為合格品,否則為次品,現(xiàn)隨機(jī)抽取兩個(gè)班組生產(chǎn)的此種產(chǎn)品各100件進(jìn)行檢測(cè),其結(jié)果如下表:

質(zhì)量指標(biāo)檢測(cè)分?jǐn)?shù)

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

甲班組生產(chǎn)的產(chǎn)品件數(shù)

7

18

40

29

6

乙班組生產(chǎn)的產(chǎn)品件數(shù)

8

12

40

32

8

(1)根據(jù)表中數(shù)據(jù),估計(jì)甲、乙兩個(gè)班組生產(chǎn)該種產(chǎn)品各自的不合格率;

(2)根據(jù)以上數(shù)據(jù),完成下面的2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為該種產(chǎn)品的質(zhì)量與生產(chǎn)產(chǎn)品的班組有關(guān)?

甲班組

乙班組

合計(jì)

合格品

次品

合計(jì)

(3)若按合格與不合格比例,從甲班組生產(chǎn)的產(chǎn)品中抽取4件產(chǎn)品,從乙班組生產(chǎn)的產(chǎn)品中抽取5件產(chǎn)品,記事件A:從上面4件甲班組生產(chǎn)的產(chǎn)品中隨機(jī)抽取2件,且都是合格品;事件B:從上面5件乙班組生產(chǎn)的產(chǎn)品中隨機(jī)抽取2件,一件是合格品,一件是次品,試估計(jì)這兩個(gè)事件哪一種情況發(fā)生的可能性大.

附:

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案