(14分)已知函數(shù)
(Ⅰ)求函數(shù)的最小值;
(Ⅱ)求證:;
(Ⅲ)對(duì)于函數(shù)定義域上的任意實(shí)數(shù),若存在常數(shù),使得都成立,則稱直線為函數(shù)的“分界線”.設(shè)函數(shù),,是否存在“分界線”?若存在,求出的值;若不存在,請(qǐng)說明理由.
(Ⅰ)的最小值為;(Ⅱ)詳見解析;(Ⅲ),

試題分析:(Ⅰ)求導(dǎo)得:,由此可得函數(shù)上遞減,上遞增,
從而得的最小值為
(Ⅱ)注意用第(Ⅰ)小題的結(jié)果.由(Ⅰ)知.這個(gè)不等式如何用?結(jié)合所在證的不等式可以看出,可以兩端同時(shí)乘以變形為:,把換成,在這個(gè)不等式中令然后將各不等式相乘即得.
(Ⅲ)結(jié)合題中定義可知,分界線就是一條把兩個(gè)函數(shù)的圖象分開的直線.那么如何確定兩個(gè)函數(shù)是否存在分界線?顯然,如果兩個(gè)函數(shù)的圖象沒有公共點(diǎn),則它們有無數(shù)條分界線,如果兩個(gè)函數(shù)至少有兩個(gè)公共點(diǎn),則它們沒有分界線.所以接下來我們就研究這兩個(gè)函數(shù)是否有公共點(diǎn).為此設(shè).通過求導(dǎo)可得當(dāng)時(shí)取得最小值0,這說明的圖象在處有公共點(diǎn).如果它們存在分界線,則這條分界線必過該點(diǎn).所以設(shè)的“分界線”方程為.由于的最小值為0,所以,所以分界線必滿足.下面就利用這兩個(gè)不等式來確定的值.
試題解析:(Ⅰ)解:因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030943693629.png" style="vertical-align:middle;" />,令,解得,
,解得
所以函數(shù)上遞減,上遞增,
所以的最小值為.                           3分
(Ⅱ)證明:由(Ⅰ)知函數(shù)取得最小值,所以,即
兩端同時(shí)乘以,把換成,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.
得,, ,
,
將上式相乘得
.         9分
(Ⅲ)設(shè).

所以當(dāng)時(shí),;當(dāng)時(shí),
因此時(shí)取得最小值0,則的圖象在處有公共點(diǎn)
設(shè)存在 “分界線”,方程為.
恒成立,
恒成立.
所以成立.因此.
下面證明成立.
設(shè),.
所以當(dāng)時(shí),;當(dāng)時(shí),.
因此時(shí)取得最大值0,則成立.
所以,.                                  14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,一種醫(yī)用輸液瓶可以視為兩個(gè)圓柱的組合體.開始輸液時(shí),滴管內(nèi)勻速滴下球狀液體,其中球狀液體的半徑毫米,滴管內(nèi)液體忽略不計(jì).

(1)如果瓶?jī)?nèi)的藥液恰好分鐘滴完,問每分鐘應(yīng)滴下多少滴?
(2)在條件(1)下,設(shè)輸液開始后(單位:分鐘),瓶?jī)?nèi)液面與進(jìn)氣管的距離為(單位:厘米),已知當(dāng)時(shí),.試將表示為的函數(shù).(注:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

提高過江大橋的車輛通行能力可改善整個(gè)城市的交通狀況.在一般情況下,大橋上的車流速度v(單位:千米/小時(shí))是車流密度(單位:輛/千米)的函數(shù).當(dāng)橋上的的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過20輛/千米時(shí),車流速度為60千米/小時(shí),研究表明:當(dāng)時(shí),車流速度是車流密度x的一次函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的表達(dá)式;
(Ⅱ)當(dāng)車流密度為多大時(shí),車流量(單位時(shí)間內(nèi)通過橋上某觀察點(diǎn)的車輛數(shù),單位:輛/每小時(shí))可以達(dá)到最大,并求出最大值(精確到1輛/小時(shí)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一種放射性元素,最初的質(zhì)量為,按每年衰減.
(1)求年后,這種放射性元素的質(zhì)量的函數(shù)關(guān)系式;
(2)求這種放射性元素的半衰期(質(zhì)量變?yōu)樵瓉淼?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030322195339.png" style="vertical-align:middle;" />時(shí)所經(jīng)歷的時(shí)間).(

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)的兩個(gè)極值點(diǎn)分別為,且,,點(diǎn)表示的平面區(qū)域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032331119314.png" style="vertical-align:middle;" />,若函數(shù)的圖像上存在區(qū)域內(nèi)的點(diǎn),則實(shí)數(shù)的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)集合A=B=,從A到B的映射在映射下,B中的元素為(4,2)對(duì)應(yīng)的A中元素為 (   )
A.(4,2)B.(1,3)C.(6,2)D.(3,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

以下四個(gè)命題:
①函數(shù)既無最小值也無最大值;
②在區(qū)間上隨機(jī)取一個(gè)數(shù),使得成立的概率為;
③若不等式對(duì)任意正實(shí)數(shù)恒成立,則正實(shí)數(shù)的最小值為16;
④已知函數(shù),若方程恰有三個(gè)不同的實(shí)根,則實(shí)數(shù)的取值范圍是;以上正確的命題序號(hào)是:_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列四類函數(shù)中,具有性質(zhì)“對(duì)任意的,,函數(shù)滿足
的是( )
A.冪函數(shù)B.對(duì)數(shù)函數(shù)C.指數(shù)函數(shù)D.余弦函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)滿足對(duì)任意的都有,則(  )
A.2011B.2010C.4020D.4022

查看答案和解析>>

同步練習(xí)冊(cè)答案