【題目】如圖,在矩形中,點在線段上, , ,沿直線將翻折成,使點在平面上的射影落在直線上.
(Ⅰ)求證:直線平面;
(Ⅱ)求二面角的平面角的余弦值.
【答案】(1)見解析(2)
【解析】試題分析:(1)根據(jù)射影定義得,再根據(jù)線面垂直得,最后根據(jù)線面垂直判定定理得結論(2)連接交于點.則根據(jù)二面角定義得是二面角的平面角的平面角.再通過解三角形得二面角的平面角的余弦值.
試題解析:(Ⅰ)證明:在線段上取點,使,連接交于點.
正方形中, , 翻折后, , ,
又 , 平面,
又 平面, 平面平面
又平面平面 ,
點在平面上的射影落在直線上,
又點在平面上的射影落在直線上,
點為直線與的交點,
平面即平面, 直線平面;
(Ⅱ)由(Ⅰ)得是二面角的平面角的平面角.
,在矩形中,可求得, .
在中, ,
二面角的平面角的余弦值為.
點睛:立體幾何中折疊問題,要注重折疊前后垂直關系的變化,不變的垂直關系是解決問題的關鍵條件.線面角的尋找,主要找射影,即需從線面垂直出發(fā)確定射影,進而確定線面角.
科目:高中數(shù)學 來源: 題型:
【題目】已知某幾何體直觀圖和三視圖如圖所示,其正視圖為矩形,側視圖為等腰直角三角形,俯視圖為直角梯形.
(1)求證: ;
(2);
(3)設為中點,在邊上找一點,使//平面并求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在5件產品中,有3件一等品和2件二等品,從中任取2件,以為概率的事件是( )
A. 恰有1件一等品 B. 至少有一件一等品
C. 至多有一件一等品 D. 都不是一等品
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有7位歌手(1至7號)參加一場歌唱比賽,由500名大眾評委現(xiàn)場投票決定歌手名次.根據(jù)年齡將大眾評委分為五組,各組的人數(shù)如下:
組別 | A | B | C | D | E |
人數(shù) | 50 | 100 | 150 | 150 | 50 |
(1)為了調查評委對7位歌手的支持情況,現(xiàn)用分層抽樣方法從各組中抽取若干評委,其中從B組抽取了6人,請將其余各組抽取的人數(shù)填入下表.
組別 | A | B | C | D | E |
人數(shù) | 50 | 100 | 150 | 150 | 50 |
抽取人數(shù) | 6 |
(2)在(1)中,若A,B兩組被抽到的評委中各有2人支持1號歌手,現(xiàn)從這兩組被抽到的評委中分別任選1人,求這2人都支持1號歌手的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).
(1)求證:當時,對任意都有;
(2)若函數(shù)有兩個極值點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的長軸長是短軸長的倍,且過點.
(1)求橢圓的標準方程;
(2)若的頂點、在橢圓上, 所在的直線斜率為, 所在的直線斜率為,若,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的兩焦點與短軸的一個端點的連線構成等腰直角三角形,
直線與以橢圓C的右焦點為圓心,以橢圓的長半軸長為半徑的圓相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設P為橢圓C上一點,若過點的直線與橢圓C相交于不同的兩點S和T,
滿足(O為坐標原點),求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com