【題目】已知數(shù)列{an}的首項a是常數(shù)),).

1,,,并判斷是否存在實數(shù)a使成等差數(shù)列.若存在,求出的通項公式;若不存在,說明理由;

2)設(shè),),為數(shù)列的前n項和,求

【答案】(1)見解析(2)

【解析】分析:(1)由).

可分別求出,,,由可知無解,從而得到結(jié)論;

(2) 可證得(n≥2)

當(dāng)a=-1時,可得

當(dāng)a≠-1, b1≠0,從第2項起是以2為公比的等比數(shù)列,

當(dāng) 滿足上式..可求.

詳解:

(1)∵

    

   

 若是等差數(shù)列,則 但由,得a=0,矛盾.

 ∴不可能是等差數(shù)列

(2)∵

(n≥2)

當(dāng)a=-1時,(n≥3),(n≥2)

當(dāng)a≠-1, b1≠0,從第2項起是以2為公比的等比數(shù)列,

當(dāng) 滿足上式,。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且

(1)判斷函數(shù)的奇偶性;

(2) 判斷函數(shù)(1,+)上的單調(diào)性,并用定義證明你的結(jié)論;

(3),求實數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方體ABCD—A1B1C1D1中,試在DD1確定一點P,使得直線BD1∥平面PAC,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的右焦點為F,上頂點為A,短軸長為2,O為原點,直線AF與橢圓C的另一個交點為B,且△AOF的面積是△BOF的面積的3倍.
(1)求橢圓C的方程;
(2)如圖,直線l:y=kx+m與橢圓C相交于P,Q兩點,若在橢圓C上存在點R,使OPRQ為平行四邊形,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】教育學(xué)家分析發(fā)現(xiàn)加強(qiáng)語文樂隊理解訓(xùn)練與提高數(shù)學(xué)應(yīng)用題得分率有關(guān),某校興趣小組為了驗證這個結(jié)論,從該校選擇甲乙兩個同軌班級進(jìn)行試驗,其中甲班加強(qiáng)閱讀理解訓(xùn)練,乙班常規(guī)教學(xué)無額外訓(xùn)練,一段時間后進(jìn)行數(shù)學(xué)應(yīng)用題測試,統(tǒng)計數(shù)據(jù)情況如下面的列聯(lián)表(單位:人)

(1)經(jīng)過多次測試后,小明正確解答一道數(shù)學(xué)應(yīng)用題所用的時

間在5—7分鐘,小剛正確解得一道數(shù)學(xué)應(yīng)用題所用的時間在6—8

分鐘,現(xiàn)小明.小剛同時獨立解答同一道數(shù)學(xué)應(yīng)用題,求小剛比

小明先正確解答完的概率;

(2)現(xiàn)從乙班成績優(yōu)秀的8名同學(xué)中任意抽取兩人,并對他們的答題情況進(jìn)行全程研究,記A.B兩人中被抽到的人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)不等式x2﹣2ax+a+2≤0的解集為M,若M[1,4],求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】全國大學(xué)生機(jī)器人大賽是由共青團(tuán)中央,全國學(xué)聯(lián),深圳市人民政府聯(lián)合主辦的賽事,是中國最具影響力的機(jī)器人項目,是全球獨創(chuàng)的機(jī)器人競技平臺.全國大學(xué)生機(jī)器人大賽比拼的是參賽選手們的能力,堅持和態(tài)度,展現(xiàn)的是個人實力以及整個團(tuán)隊的力量.2015賽季共吸引全國240余支機(jī)器人戰(zhàn)隊踴躍報名,這些參賽戰(zhàn)隊來自全國六大賽區(qū),150余所高等院校,其中不乏北京大學(xué),清華大學(xué),上海交大,中國科大,西安交大等眾多國內(nèi)頂尖高校,經(jīng)過嚴(yán)格篩選,最終由111支機(jī)器人戰(zhàn)隊參與到2015年全國大學(xué)生機(jī)器人大賽的激烈角逐之中,某大學(xué)共有“機(jī)器人”興趣團(tuán)隊1000個,大一、大二、大三、大四分別有100,200,300,400個,為挑選優(yōu)秀團(tuán)隊,現(xiàn)用分層抽樣的方法,從以上團(tuán)隊中抽取20個團(tuán)隊.

(1)應(yīng)從大三抽取多少個團(tuán)隊?

(2)將20個團(tuán)隊分為甲、乙兩組,每組10個團(tuán)隊,進(jìn)行理論和實踐操作考試(共150分),甲、乙兩組的分?jǐn)?shù)如下:

甲:125,141,140,137,122,114,119,139,121,142

乙:127,116,144,127,144,116,140,140,116,140

從甲、乙兩組中選一組強(qiáng)化訓(xùn)練,備戰(zhàn)機(jī)器人大賽.從統(tǒng)計學(xué)數(shù)據(jù)看,若選擇甲組,理由是什么?若選擇乙組,理由是什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四組函數(shù),表示同一函數(shù)的是(
A.f(x)= ,g(x)=x
B.f(x)=x,g(x)=
C.f(x)= ,g(x)=
D.(x)=|x+1|,g(x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,設(shè)函數(shù),

(1)存在,使得上的最大值,求的取值范圍;

(2)對任意恒成立時,的最大值為1,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案