【題目】潮汐是發(fā)生在沿海地區(qū)的一種自然現(xiàn)象,其形成是海水受日月的引力.潮是指海水在一定的時(shí)候發(fā)生漲落的現(xiàn)象.一般來說,早潮叫潮,晚潮叫汐.某觀測站通過長時(shí)間的觀測,其發(fā)現(xiàn)潮汐的漲落規(guī)律和函數(shù)圖象基本一致且周期為,其中為時(shí)間,為水深.當(dāng)時(shí),海水上漲至最高5米.
(1)作出函數(shù)在內(nèi)的圖象,并求出潮汐漲落的頻率和初相;
(2)求海水水深持續(xù)加大的時(shí)間區(qū)間.
【答案】(1)圖見解析,頻率,初相;(2)
【解析】
(1)根據(jù)函數(shù)的周期,求得,根據(jù)題意,得到,,從而求得函數(shù)解析式,利用五點(diǎn)作圖法畫出圖象;
(2)相當(dāng)于求單調(diào)增區(qū)間,利用整體角思維,結(jié)合正弦函數(shù)的單調(diào)增區(qū)間,求得結(jié)果.
(1),又,
時(shí),,
故函數(shù),
頻率;時(shí),初相,
圖象應(yīng)用五點(diǎn)作圖法分別取,
求出對應(yīng)的函數(shù)值,并描點(diǎn)和繪制
(2)求海水水深持續(xù)加大的時(shí)間區(qū)間,
即求的單調(diào)遞增區(qū)間.
令,
函數(shù)的單調(diào)遞增區(qū)間為,
即,
即.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1) 討論的單調(diào)性;
(2) 設(shè),當(dāng)時(shí), ,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)說偉大的阿基米德逝世后,敵軍將領(lǐng)馬塞拉斯給他建了一塊墓碑,在墓碑上刻了一個(gè)如圖所示的圖案,圖案中球的直徑、圓柱底面的直徑和圓柱的高相等,圓錐的頂點(diǎn)為圓柱上底面的圓心,圓錐的底面是圓柱的下底面.
(1)試計(jì)算出圖案中圓柱與球的體積比;
(2)假設(shè)球半徑.試計(jì)算出圖案中圓錐的體積和表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)在生物研究性學(xué)習(xí)中,對春季晝夜溫差大小與黃豆種子發(fā)芽多少之間的關(guān)系進(jìn)行研究,于是他在4月份的30天中隨機(jī)挑選了5天進(jìn)行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:
日期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)/顆 | 23 | 25 | 30 | 26 | 16 |
(1)從這5天中任選2天,求這2天發(fā)芽的種子數(shù)均不小于25的概率;
(2)從這5天中任選2天,若選取的是4月1日與4月30日的兩組數(shù)據(jù),請根據(jù)這5天中的另三天的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù), (m常數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),函數(shù)有零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,B1,B2是橢圓的短軸端點(diǎn),P是橢圓上異于點(diǎn)B1,B2的一動點(diǎn).當(dāng)直線PB1的方程為時(shí),線段PB1的長為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)Q滿足:QB1⊥PB1,QB2⊥PB2,求證:△PB1B2與△QB1B2的面積之比為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為,過任作一條與坐標(biāo)軸都不垂直的直線,與交于兩點(diǎn),且的周長為.當(dāng)直線的斜率為時(shí),與軸垂直
(1)求橢圓的方程
(2)若是該橢圓上位于第一象限的一點(diǎn),過作圓的切線,切點(diǎn)為,求的值;
(3)設(shè)為定點(diǎn),直線過點(diǎn)與軸交于點(diǎn),且與橢圓交于兩點(diǎn),設(shè),,求的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新冠肺炎疫情期間,為了減少外出聚集,“線上買菜”受追捧.某電商平臺在地區(qū)隨機(jī)抽取了位居民進(jìn)行調(diào)研,獲得了他們每個(gè)人近七天“線上買菜”消費(fèi)總金額(單位:元),整理得到如圖所示頻率分布直方圖.
(1)求的值;
(2)從“線上買菜”消費(fèi)總金額不低于元的被調(diào)研居民中,隨機(jī)抽取位給予獎品,求這位“線上買菜”消費(fèi)總金額均低于元的概率;
(3)若地區(qū)有萬居民,該平臺為了促進(jìn)消費(fèi),擬對消費(fèi)總金額不到平均水平一半的居民投放每人元的電子補(bǔ)貼.假設(shè)每組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替,試根據(jù)上述頻率分布直方圖,估計(jì)該平臺在地區(qū)擬投放的電子補(bǔ)貼總金額.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com