【題目】已知橢圓,過右焦點的直線與橢圓交于兩點,且當點是橢圓的上頂點時,,線段的中點為

(1)求橢圓的方程;

(2)延長線段與橢圓交于點,若,求此時的方程.

【答案】(1)(2)

【解析】

(1)由題意可以知可求出點的坐標,又點在橢圓上,將點的坐標代入橢圓方程,即可求出,進而求出橢圓方程

(2)當直線與垂直或與軸重合時,不滿足題意,故可設直線方程為:可知四邊形為平行四邊形,可得點為線段的中點,再根據點差法即可求出結果.

(1)由題意可以知、,設

∵點在橢圓解得

∴橢圓的方程為:

(2)當直線與垂直或與軸重合時,不滿足題意

∴可直線方程為:

、、

可知四邊形為平行四邊形

∴點為線段的中點

為線段的中點,點、在橢圓

可得又∵

可解得

∵點在橢圓

整理得

解得舍去

可知的方程為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】2019年以來,我國國內非洲豬瘟疫情嚴重,引發(fā)豬肉價格上漲.因此,國家為保民生采取宏觀調控對豬肉價格進行有效地控制.通過市場調查,得到豬肉價格在近四個月的市場平均價(單位:/)與時間 (單位:)的數(shù)據如下:

8

9

10

11

28.00

33.99

36.00

34.02

現(xiàn)有三種函數(shù)模型:,,,找出你認為最適合的函數(shù)模型,并估計201912月份的豬肉市場平均價為(

A.28B.25C.23D.21

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校學生社團組織活動豐富,學生會為了解同學對社團活動的滿意程度,隨機選取了100位同學進行問卷調查,并將問卷中的這100人根據其滿意度評分值(百分制)按照[40,50),[50,60),[60,70),,[90,100]分成6組,制成如圖所示頻率分布直方圖.

1)求圖中x的值;

2)求這組數(shù)據的中位數(shù);

3)現(xiàn)從被調查的問卷滿意度評分值在[6080)的學生中按分層抽樣的方法抽取5人進行座談了解,再從這5人中隨機抽取2人作主題發(fā)言,求抽取的2人恰在同一組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)y=sin2x-cos2x的圖象向左平移m(m>0)個單位以后得到的圖象與函數(shù)y=ksinxcosx(k>0)的圖象關于(,0)對稱,則k+m的最小正值是

A. 2+ B. 2+ C. 2+ D. 2+

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l1:y=x,l2:y=-x,動點P,Q分別在l1l2上移動,|PQ|=2,N是線段PQ的中點,記點N的軌跡為曲線C.

(Ⅰ)求曲線C的方程;

(Ⅱ)過點M(0,1)分別作直線MA,MB交曲線C于A,B兩點,設這兩條直線的斜率分別為k1,k2,且k1+k2=2,證明:直線AB過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若在區(qū)間,上同時存在函數(shù)的極值點和零點,求實數(shù)的取值范圍.

2)如果對任意,有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f (x)=lnx-x+1.

(1)f (x)的極值;

(2)0<a<1,證明函數(shù)g (x)=(x-a)exax2+a(a-1) x(x>lna)有極小值點x0,且g (x0)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定直線,定點,以坐標軸為對稱軸的橢圓過點且與相切.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)橢圓的弦的中點分別為,若平行于,則斜率之和是否為定值? 若是定值,請求出該定值;若不是定值請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】1)一個袋子中裝有4個大小形狀完全相同的小球,球的編號分別為1,2,3,4,從袋中有放回的取兩個球,設前后兩次取得的球的編號分別為,求的概率;

2)某校早上 開始上課,假設該校學生小張與小王在早上730750之間到校,且每人在該時間段內到校時刻是等可能的,求小王比小張至少早5分鐘到校的概率.

查看答案和解析>>

同步練習冊答案