【題目】在△ABC中,角A、B、C所對的邊分別為a、b、c,已知向量m = (cosA,cosB),n = (b + 2c,a),且m⊥n.
(1)求角A的大;
(2)若a = 4,b + c = 8,求AC邊上的高h的大小.
【答案】(1);(2).
【解析】試題分析:
(1)由向量垂直可得數(shù)量積為0,據(jù)此可得 .
(2)利用題中所給的條件列出方程組,求解方程組可得AC邊上的高h的大小為.
試題解析:
(1)因為m⊥n,所以m·n = 0,所以(b + 2c)cosA + a cosB = 0,
由正弦定理得cosAsinB + 2cosAsinC + cosBsinA = 0,即sin(A + B) + 2cosAsinC = 0,
因為A + B = – C,所以sin(A+B)=sinC,即sinC + 2cosAsinC = 0.
又因為C∈(0,),所以sinC > 0,所以cosA = -.
因為A∈(0,),所以.
(2)由…………9分,解得.
所以S = bcsinA = hAC,所以h =.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】深圳市某校中學(xué)生籃球隊假期集訓(xùn),集訓(xùn)前共有6個籃球,其中3個是新球(即沒有用過的球),3個是舊球(即至少用過一次的球).每次訓(xùn)練,都從中任意取出2個球,用完后放回.
(1)設(shè)第一次訓(xùn)練時取到的新球個數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望;
(2)求第二次訓(xùn)練時恰好取到一個新球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (常數(shù)a∈R).
(1)判斷函數(shù)f(x)的奇偶性,并證明;
(2)若f(1)=2,證明函數(shù)f(x)在(1,+∞)上是增函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=lnx﹣ 的零點所在的大致區(qū)間是( )
A.(1,2)
B.(2,3)
C.(e,3)
D.(e,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線C1: .
(1)求與雙曲線C1有相同焦點,且過點P(4, )的雙曲線C2的標準方程;
(2)直線l:y=x+m分別交雙曲線C1的兩條漸近線于A、B兩點.當 =3時,求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集為實數(shù)集R,集合A={x|y= + },B={x|2x>4}
( I)分別求A∪B,A∩B,(UB)∪A
( II)已知集合C={x|1<x<a},若CA,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=2x2+bx+c在 上是減函數(shù),在 上是增函數(shù),且兩個零點x1 , x2滿足|x1﹣x2|=2,求二次函數(shù)的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com